mayya-sharipova commented on code in PR #12794:
URL: https://github.com/apache/lucene/pull/12794#discussion_r1403584908
##########
lucene/core/src/java/org/apache/lucene/search/TopKnnCollector.java:
##########
@@ -26,26 +26,71 @@
* @lucene.experimental
*/
public final class TopKnnCollector extends AbstractKnnCollector {
+ private static final float DEFAULT_GREEDINESS = 0.9f;
private final NeighborQueue queue;
+ private final float greediness;
+ private final NeighborQueue queueg;
+ private final MaxScoreAccumulator globalMinSimAcc;
+ private boolean kResultsCollected = false;
+ private float cachedGlobalMinSim = Float.NEGATIVE_INFINITY;
+
+ // greediness of globally non-competitive search: [0,1]
/**
* @param k the number of neighbors to collect
* @param visitLimit how many vector nodes the results are allowed to visit
+ * @param globalMinSimAcc the global minimum competitive similarity tracked
across all segments
*/
- public TopKnnCollector(int k, int visitLimit) {
+ public TopKnnCollector(int k, int visitLimit, MaxScoreAccumulator
globalMinSimAcc) {
+ super(k, visitLimit);
+ this.greediness = DEFAULT_GREEDINESS;
+ this.queue = new NeighborQueue(k, false);
+ int queuegSize = Math.max(1, Math.round((1 - greediness) * k));
+ this.queueg = new NeighborQueue(queuegSize, false);
+ this.globalMinSimAcc = globalMinSimAcc;
+ }
+
+ public TopKnnCollector(
+ int k, int visitLimit, MaxScoreAccumulator globalMinSimAcc, float
greediness) {
super(k, visitLimit);
+ this.greediness = greediness;
this.queue = new NeighborQueue(k, false);
+ this.queueg = new NeighborQueue(Math.round((1 - greediness) * k), false);
+ this.globalMinSimAcc = globalMinSimAcc;
}
@Override
public boolean collect(int docId, float similarity) {
- return queue.insertWithOverflow(docId, similarity);
+ boolean result = queue.insertWithOverflow(docId, similarity);
+ queueg.insertWithOverflow(docId, similarity);
+
+ boolean reachedKResults = (kResultsCollected == false && queue.size() ==
k());
+ if (reachedKResults) {
+ kResultsCollected = true;
+ }
+ if (globalMinSimAcc != null && kResultsCollected) {
+ // as we've collected k results, we can start exchanging globally
+ globalMinSimAcc.accumulate(queue.topNode(), queue.topScore());
+
+ // periodically update the local copy of global similarity
+ if (reachedKResults || (visitedCount & globalMinSimAcc.modInterval) ==
0) {
+ MaxScoreAccumulator.DocAndScore docAndScore = globalMinSimAcc.get();
+ cachedGlobalMinSim = docAndScore.score;
Review Comment:
Thanks for your idea, it looks like it should provide better speedups than
the current approach.
We can check globalMinSim before starting search, and see if it makes
difference
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]