ML-dev-crypto commented on code in PR #15667:
URL: https://github.com/apache/lucene/pull/15667#discussion_r2774079479


##########
lucene/core/src/java/org/apache/lucene/util/hnsw/NeighborArray.java:
##########
@@ -310,21 +310,47 @@ private boolean isWorstNonDiverse(
     float minAcceptedSimilarity = scores.get(candidateIndex);
     if (candidateIndex == uncheckedIndexes[uncheckedCursor]) {
       // the candidate itself is unchecked
-      for (int i = candidateIndex - 1; i >= 0; i--) {
-        float neighborSimilarity = scorer.score(nodes.get(i));
+      int numNodesToCheck = candidateIndex;
+      if (numNodesToCheck == 0) {
+        return false;
+      }
+      
+      // Allocate a temporary buffer for scores.
+      // NeighborArray size is typically small (M=16 or 32), so this 
allocation is acceptable
+      // and keeps the change localized to this class.
+      float[] neighborScores = new float[numNodesToCheck];
+      
+      // Bulk score all neighbors.
+      // The default implementation in RandomVectorScorer handles the fallback 
if needed.
+      scorer.bulkScore(nodes.buffer, neighborScores, numNodesToCheck);
+      
+      for (int i = 0; i < numNodesToCheck; i++) {
         // candidate node is too similar to node i given its score relative to 
the base node
-        if (neighborSimilarity >= minAcceptedSimilarity) {
+        if (neighborScores[i] >= minAcceptedSimilarity) {
           return true;
         }
       }
     } else {
       // else we just need to make sure candidate does not violate diversity 
with the (newly
       // inserted) unchecked nodes
       assert candidateIndex > uncheckedIndexes[uncheckedCursor];
-      for (int i = uncheckedCursor; i >= 0; i--) {
-        float neighborSimilarity = 
scorer.score(nodes.get(uncheckedIndexes[i]));
+      int numNodesToCheck = uncheckedCursor + 1;
+      
+      // Allocate a temporary buffer for scores.
+      float[] neighborScores = new float[numNodesToCheck];
+      
+      // Create a temporary array with only the nodes we need to check
+      int[] nodesToCheck = new int[numNodesToCheck];
+      for (int i = 0; i <= uncheckedCursor; i++) {
+        nodesToCheck[i] = nodes.get(uncheckedIndexes[i]);
+      }
+      
+      // Bulk score all unchecked neighbors
+      scorer.bulkScore(nodesToCheck, neighborScores, numNodesToCheck);

Review Comment:
   THANKS FOR YOUR GUIDANCE  I've updated the logic to capture the return value 
from bulkScore and use it for an early exit. If the maximum similarity in the 
batch is worse than the candidate, we can return immediately without iterating.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to