[ https://issues.apache.org/jira/browse/SPARK-21392?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16090159#comment-16090159 ]
Stuart Reynolds commented on SPARK-21392: ----------------------------------------- So.... trying to look at the csv was helpful. {code:none} #root = "/network/folder" # succeeds root = "" # fails rdd.write.parquet(root+"mi", mode="overwrite") rdd.write.csv(root+"minn.csv", mode="overwrite") rdd2 = sqlc.read.parquet(root+"mi") {code} The above creates a folder on my local machine, but no data. {code:none} % ls -la mi minn.csv mi: total 12 drwxrwxr-x 2 builder builder 4096 Jul 17 10:42 . drwxrwxr-x 5 builder builder 4096 Jul 17 10:42 .. -rw-r--r-- 1 builder builder 0 Jul 17 10:42 _SUCCESS -rw-r--r-- 1 builder builder 8 Jul 17 10:42 ._SUCCESS.crc minn.csv/: total 12 drwxrwxr-x 2 builder builder 4096 Jul 17 10:42 . drwxrwxr-x 5 builder builder 4096 Jul 17 10:42 .. -rw-r--r-- 1 builder builder 0 Jul 17 10:42 _SUCCESS -rw-r--r-- 1 builder builder 8 Jul 17 10:42 ._SUCCESS.crc {code} Prepending the paths with network folder that's available to spark succeeds. So, is this just a "file not found error", with a terrible error message? > Unable to infer schema when loading large Parquet file > ------------------------------------------------------ > > Key: SPARK-21392 > URL: https://issues.apache.org/jira/browse/SPARK-21392 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.1.1, 2.2.0 > Environment: Spark 2.1.1. python 2.7.6 > Reporter: Stuart Reynolds > Labels: parquet, pyspark > > The following boring code works up until when I read in the parquet file. > {code:none} > import numpy as np > import pandas as pd > import pyspark > from pyspark import SQLContext, SparkContext, SparkConf > print pyspark.__version__ > sc = SparkContext(conf=SparkConf().setMaster('local')) > df = pd.DataFrame({"mi":np.arange(100), "eid":np.arange(100)}) > print df > sqlc = SQLContext(sc) > df = sqlc.createDataFrame(df) > df = df.createOrReplaceTempView("outcomes") > rdd = sqlc.sql("SELECT eid,mi FROM outcomes limit 5") > print rdd.schema > rdd.show() > rdd.write.parquet("mi", mode="overwrite") > rdd2 = sqlc.read.parquet("mi") # FAIL! > {code} > {code:none} > # print pyspark.__version__ > 2.2.0 > # print df > eid mi > 0 0 0 > 1 1 1 > 2 2 2 > 3 3 3 > ... > [100 rows x 2 columns] > # print rdd.schema > StructType(List(StructField(eid,LongType,true),StructField(mi,LongType,true))) > # rdd.show() > +---+---+ > |eid| mi| > +---+---+ > | 0| 0| > | 1| 1| > | 2| 2| > | 3| 3| > | 4| 4| > +---+---+ > {code} > > fails with: > {code:none} > rdd2 = sqlc.read.parquet("mixx") > File "/usr/local/lib/python2.7/dist-packages/pyspark/sql/readwriter.py", > line 291, in parquet > return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths))) > File "/usr/local/lib/python2.7/dist-packages/py4j/java_gateway.py", line > 1133, in __call__ > answer, self.gateway_client, self.target_id, self.name) > File "/usr/local/lib/python2.7/dist-packages/pyspark/sql/utils.py", line > 69, in deco > raise AnalysisException(s.split(': ', 1)[1], stackTrace) > pyspark.sql.utils.AnalysisException: u'Unable to infer schema for Parquet. It > must be specified manually.;' > {code} > The documentation for parquet says the format is self describing, and the > full schema was available when the parquet file was saved. What gives? > Works with master='local', but fails with my cluster is specified. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org