[ https://issues.apache.org/jira/browse/SPARK-22622?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16269894#comment-16269894 ]
Raghavendra edited comment on SPARK-22622 at 11/29/17 1:39 AM: --------------------------------------------------------------- The output of previous Stage is around 70GB and my driver memory is 225GB. Why am i getting an OOM when there is sufficient memory. Also, since this is closure serializer, isnt it only serializing the Physical Plan and not the RDD? 17/11/28 07:22:53 INFO DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[25] at parquet at LogProcessor.java:473), which has no missing parents 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 25 - 0 - 0 - StorageLevel(1 replicas) - parquet at LogProcessor.java:473 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 20 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 19 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 12 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:88 17/11/28 07:22:53 ERROR LogListener: RDD Info : FileScanRDD - 11 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:88 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 22 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 18 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 21 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 24 - 0 - 0 - StorageLevel(1 replicas) - parquet at LogProcessor.java:473 Exception in thread "dag-scheduler-event-loop" java.lang.OutOfMemoryError at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) at org.apache.spark.util.ByteBufferOutputStream.write(ByteBufferOutputStream.scala:41) at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:43) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100) at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1003) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:930) at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:874) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1677) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) was (Author: ragzisme): The output of previous Stage is around 70GB and my driver memory is 225GB. Why am i getting an OOM when there is sufficient memory. Also, since this is closure serializer, isnt it only serializing the Physical Plan and not the RDD? 17/11/28 07:22:53 INFO DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[25] at parquet at LogProcessor.java:473), which has no missing parents 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 25 - 0 - 0 - StorageLevel(1 replicas) - parquet at LogProcessor.java:473 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 20 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 19 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 12 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:88 17/11/28 07:22:53 ERROR LogListener: RDD Info : FileScanRDD - 11 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:88 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 22 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 18 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 21 - 0 - 0 - StorageLevel(1 replicas) - persist at LogProcessor.java:283 17/11/28 07:22:53 ERROR LogListener: RDD Info : MapPartitionsRDD - 24 - 0 - 0 - StorageLevel(1 replicas) - parquet at LogProcessor.java:473 > OutOfMemory thrown by Closure Serializer > ---------------------------------------- > > Key: SPARK-22622 > URL: https://issues.apache.org/jira/browse/SPARK-22622 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 2.2.0 > Environment: Spark 2.2.0 > Hadoop 2.9.0 > Reporter: Raghavendra > Priority: Critical > > While moving from a Stage to another, the Closure serializer is trying to > Serialize the Closures and throwing OOMs. > This is happening when the RDD size crosses 70 GB. > I set the Driver Memory to 225 GB and yet the error persists. > {color:red}Exception in thread "dag-scheduler-event-loop" > java.lang.OutOfMemoryError: Requested array size exceeds VM limit > at java.util.Arrays.copyOf(Arrays.java:3236) > at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) > at > java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) > at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) > at > org.apache.spark.util.ByteBufferOutputStream.write(ByteBufferOutputStream.scala:41) > at > java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) > at > java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) > at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) > at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) > at > org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:43) > at > org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100) > at > org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1003) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:930) > at > org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:874) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1677) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > {color} -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org