[ 
https://issues.apache.org/jira/browse/SPARK-22622?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Raghavendra updated SPARK-22622:
--------------------------------
    Summary: OutOfMemory thrown by Closure Serializer without proper failure 
propagation  (was: OutOfMemory thrown by Closure Serializer)

> OutOfMemory thrown by Closure Serializer without proper failure propagation
> ---------------------------------------------------------------------------
>
>                 Key: SPARK-22622
>                 URL: https://issues.apache.org/jira/browse/SPARK-22622
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 2.2.0
>         Environment: Spark 2.2.0
> Hadoop 2.9.0
>            Reporter: Raghavendra
>            Priority: Critical
>
> While moving from a Stage to another, the Closure serializer is trying to 
> Serialize the Closures and throwing OOMs.
>  This is happening when the RDD size crosses 70 GB. 
> I set the Driver Memory to 225 GB and yet the error persist.
>  There are two issues here
> * OOM thrown when there is almost 3 times of Driver memory provided than the 
> last Stage RDD size.(Even tried caching this into the disk before moving it 
> into the current stage)
> * After the Error is thrown, the Spark Job does not exit. it just continues 
> in the same state without propagating the error into the Spark UI.
> *Scenario 1*
> {color:red}Exception in thread "dag-scheduler-event-loop" 
> java.lang.OutOfMemoryError: Requested array size exceeds VM limit
>       at java.util.Arrays.copyOf(Arrays.java:3236)
>       at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
>       at 
> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>       at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>       at 
> org.apache.spark.util.ByteBufferOutputStream.write(ByteBufferOutputStream.scala:41)
>       at 
> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
>       at 
> java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786)
>       at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189)
>       at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
>       at 
> org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:43)
>       at 
> org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
>       at 
> org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1003)
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:930)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:874)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1677)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> {color}
> *Scenario 2*
> {color:red}
>        org.apache.spark.SparkException: Exiting due to error from cluster 
> scheduler: Master removed our application: KILLED
>       at 
> org.apache.spark.scheduler.TaskSchedulerImpl.error(TaskSchedulerImpl.scala:509)
>       at 
> org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend.dead(StandaloneSchedulerBackend.scala:146)
>       at 
> org.apache.spark.deploy.client.StandaloneAppClient$ClientEndpoint.markDead(StandaloneAppClient.scala:254)
>       at 
> org.apache.spark.deploy.client.StandaloneAppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(StandaloneAppClient.scala:168)
>       at 
> org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:117)
>       at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:205)
>       at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:101)
>       at 
> org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:213)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748)
> {color}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to