[ https://issues.apache.org/jira/browse/SPARK-22641?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16270132#comment-16270132 ]
Andrew Duffy commented on SPARK-22641: -------------------------------------- Query plan with the literal: {code} == Parsed Logical Plan == 'Project [a#98, b#102, ident('b) AS fails_here#106] +- Project [a#98, qq AS b#102] +- Deduplicate [a#98] +- LogicalRDD [a#98], false == Analyzed Logical Plan == a: string, b: string, fails_here: string Project [a#98, b#102, ident(b#102) AS fails_here#106] +- Project [a#98, qq AS b#102] +- Deduplicate [a#98] +- LogicalRDD [a#98], false == Optimized Logical Plan == Aggregate [a#98], [a#98, qq AS b#102, ident(qq) AS fails_here#106] +- LogicalRDD [a#98], false == Physical Plan == *HashAggregate(keys=[a#98], functions=[], output=[a#98, b#102, fails_here#106]) +- Exchange hashpartitioning(a#98, 200) +- BatchEvalPython [ident(qq)], [a#98, pythonUDF0#111] +- *HashAggregate(keys=[a#98], functions=[], output=[a#98]) +- Scan ExistingRDD[a#98] {code} And with {{F.col('a')}} {code} == Parsed Logical Plan == 'Project [a#56, b#60, ident('b) AS fails_here#64] +- Project [a#56, a#56 AS b#60] +- Deduplicate [a#56] +- LogicalRDD [a#56], false == Analyzed Logical Plan == a: string, b: string, fails_here: string Project [a#56, b#60, ident(b#60) AS fails_here#64] +- Project [a#56, a#56 AS b#60] +- Deduplicate [a#56] +- LogicalRDD [a#56], false == Optimized Logical Plan == Project [a#56, b#60, ident(a#56) AS fails_here#64] +- Aggregate [a#56], [a#56, a#56 AS b#60, a#56] +- LogicalRDD [a#56], false == Physical Plan == *Project [a#56, b#60, pythonUDF0#69 AS fails_here#64] +- BatchEvalPython [ident(a#56)], [a#56, b#60, pythonUDF0#69] +- *Project [a#56, b#60] +- *HashAggregate(keys=[a#56], functions=[], output=[a#56, b#60, a#56]) +- Exchange hashpartitioning(a#56, 200) +- *HashAggregate(keys=[a#56], functions=[], output=[a#56]) +- Scan ExistingRDD[a#56] {code} > Pyspark UDF relying on column added with withColumn after distinct > ------------------------------------------------------------------ > > Key: SPARK-22641 > URL: https://issues.apache.org/jira/browse/SPARK-22641 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.3.0 > Reporter: Andrew Duffy > > We seem to have found an issue with PySpark UDFs interacting with > {{withColumn}} when the UDF depends on the column added in {{withColumn}}, > but _only_ if {{withColumn}} is performed after a {{distinct()}}. > Simplest repro in a local PySpark shell: > {code} > import pyspark.sql.functions as F > @F.udf > def ident(x): > return x > spark.createDataFrame([{'a': '1'}]) \ > .distinct() \ > .withColumn('b', F.lit('qq')) \ > .withColumn('fails_here', ident('b')) \ > .collect() > {code} > This fails with the following exception: > {code} > Py4JJavaError: An error occurred while calling o1321.collectToPython. > : org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding > attribute, tree: pythonUDF0#306 > at > org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$33.apply(HashAggregateExec.scala:475) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$33.apply(HashAggregateExec.scala:474) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultCode(HashAggregateExec.scala:474) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:612) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:148) > at > org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:85) > at > org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:80) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135) > at > org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:80) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:331) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:372) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116) > at > org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:228) > at > org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:275) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2872) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2869) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2869) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2892) > at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2869) > at sun.reflect.GeneratedMethodAccessor60.invoke(Unknown Source) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:280) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:748) > Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#306 in [a#293] > at scala.sys.package$.error(package.scala:27) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) > at > org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) > ... 58 more > {code} > The odd part is that if you run the code, but remove the {{.distinct()}}, or > place it after either of the {{.withColumn}} lines, we don't get the error. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org