[ https://issues.apache.org/jira/browse/SPARK-22641?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16271085#comment-16271085 ]
Apache Spark commented on SPARK-22641: -------------------------------------- User 'sethah' has created a pull request for this issue: https://github.com/apache/spark/pull/19680 > Pyspark UDF relying on column added with withColumn after distinct > ------------------------------------------------------------------ > > Key: SPARK-22641 > URL: https://issues.apache.org/jira/browse/SPARK-22641 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.3.0 > Reporter: Andrew Duffy > > We seem to have found an issue with PySpark UDFs interacting with > {{withColumn}} when the UDF depends on the column added in {{withColumn}}, > but _only_ if {{withColumn}} is performed after a {{distinct()}}. > Simplest repro in a local PySpark shell: > {code} > import pyspark.sql.functions as F > @F.udf > def ident(x): > return x > spark.createDataFrame([{'a': '1'}]) \ > .distinct() \ > .withColumn('b', F.lit('qq')) \ > .withColumn('fails_here', ident('b')) \ > .collect() > {code} > This fails with the following exception: > {code} > : org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding > attribute, tree: pythonUDF0#13 > at > org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:91) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:90) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:90) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:514) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:513) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at scala.collection.immutable.List.foreach(List.scala:381) > at > scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.immutable.List.map(List.scala:285) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:513) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:659) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:164) > at > org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:85) > at > org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:80) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) > at > org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:80) > at > org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:374) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:422) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:113) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) > at > org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113) > at > org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:233) > at > org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:280) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:3088) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:3118) > at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3085) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:282) > at > py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:748) > Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#13 in [a#0] > at scala.sys.package$.error(package.scala:27) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:97) > at > org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:91) > at > org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) > ... 58 more > {code} > The odd part is that if you run the code, but remove the {{.distinct()}}, or > place it after either of the {{.withColumn}} lines, we don't get the error. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org