I tried the built-in profiler, and find that the problem lies in lines I 
end  with ******, the result is shown below:
that proved my guess, how can I pre-allocate these arrays? If I don't want 
to divide this code into several parts that calculate these arrays 
separately. 

| lines | backtrace |

|   169 |      9011 |  ***********

|   173 |      1552 |

|   175 |      2604 |

|   179 |      2906 |

|   181 |      1541 |

|   192 |      4458 |

|   211 |     13332 ************|

|   214 |      8431 |************

|   218 |     15871 |***********

|   221 |      2538 |


在 2016年3月29日星期二 UTC+8下午9:27:27,Stefan Karpinski写道:
>
> Have you tried:
>
> (a) calling @code_typewarn on your function
> (b) using the built-in profiler?
>
>
> On Tue, Mar 29, 2016 at 9:23 AM, 博陈 <chenph...@gmail.com <javascript:>> 
> wrote:
>
>> First of all, have a look at the result.
>>
>>
>> <https://lh3.googleusercontent.com/-anNt-E4P1vM/Vvp-TybegZI/AAAAAAAAABE/ZvDO2xarndMSgKVOXy_hcPd5NTh-7QcEA/s1600/QQ%25E5%259B%25BE%25E7%2589%258720160329210732.png>
>>
>>
>>
>>
>>
>>
>>
>>
>> My code calculates the evolution of 1-d 2-electron system in the electric 
>> field, some variables are calculated during the evolution.
>> According to the result of @time evolution, my code must have a 
>> pre-allocation problem. Before you see the long code, i suggest that the 
>> hotspot might be around the Arrays prop_e, \phio, pp. I have learnt that I 
>> can use m = Array(Float64, 1) outside a "for" loop and empty!(m) and 
>> push!(m, new_m) inside the loop to pre-allocate the variable m, but in my 
>> situations, I don't know how to pre-allocate these arrays.
>>
>> Below is the script (precisely, the main function) itself.
>>
>> function evolution(ϕ::Array{Complex{Float64}, 2},
>>                    ele::Array{Float64, 1}, dx::Float64, dt::Float64,
>>                    flags::Tuple{Int64, Int64, Int64, Int64})
>>     ϕg = copy(ϕ)
>>     FFTW.set_num_threads(8)
>>     ns = length( ϕ[:, 1] )
>>     x = get_x(ns, dx)
>>     p = get_p(ns, dx)
>>     if flags[4] == 1
>>         pp = similar(p)
>>         A = -cumsum(ele) * dt
>>         A² = A.*A
>>         ##### splitting
>>         r_sp = 150.0
>>         δ_sp = 5.0
>>         splitter = Array(Float64, ns, ns)
>>     end
>>     nt = length( ele )
>>
>>     # ##### Pre-allocate result and temporary arrays
>>     #if flags[1] == 1
>>     σ = zeros(Complex128, nt)
>>     #end
>>     #if flags[2] == 1
>>     a = zeros(Float64, nt)
>>     #end
>>     #if flags[3] == 1
>>     r_ionization = 20.0
>>     n1 = round(Int, ns/2 - r_ionization/dx)
>>     n2 = round(Int, ns/2 + r_ionization/dx)
>>     ip = zeros(Float64, nt)
>>     #end
>>
>>     ##### FFT plan
>>     p_fft! = plan_fft!( similar(ϕ), flags=FFTW.MEASURE )
>>
>>     prop_x = similar( ϕ )
>>     prop_p = similar( prop_x )
>>     prop_e = similar( prop_x )
>>     # this two versions just cost the same time
>>     xplusy = Array(Float64, ns, ns)
>>     #xplusy = Array( Float64, ns^2)
>>
>>     ##### absorb boundary
>>     r_a = ns * dx /2 - 50.0
>>     δ = 10.0
>>     absorb = Array(Float64, ns, ns)
>>
>>     k0 = 2π / (ns * dx)
>>
>>     @inbounds for j in 1:ns
>>         @inbounds for i in 1:ns
>>             prop_x[i, j] = exp( -im * get_potential(x[i], x[j]) * dt / 2 )
>>             prop_p[i, j] = exp( -im * (p[i]^2 + p[j]^2)/2 * dt )
>>
>>             xplusy[i, j] = x[i] + x[j]
>>
>>             absorb[i, j] = (1.0 - get_out(x[i], r_a, δ ))* (1.0 - 
>> get_out(x[j],
>>              r_a, δ))
>>         end
>>     end
>>
>>     if flags[2] == 1
>>         pvpx = Array(Float64, ns, ns)
>>         @inbounds for j in 1:ns
>>             @inbounds for i in 1:ns
>>                 pvpx[i, j] = get_pvpx(x[i], x[j])
>>             end
>>         end
>>     end
>>
>>     if flags[4] == 1
>>         ϕo = zeros(Complex128, ns, ns)
>>         ϕp = zeros(Complex128, ns, ns)
>>         @inbounds for  j in 1:ns
>>             @inbounds for  i in 1:ns
>>                 splitter[i, j] = get_out(x[i], r_sp, δ_sp) * 
>> get_out(x[j], r_sp, δ_sp)
>>             end
>>         end
>>     end
>>
>>     for i in 1:nt
>>         for j in eachindex(ϕ)
>>             prop_e[j] = exp( -im * ele[i] * xplusy[j] * dt/2.0) 
>> ************************************169
>>         end
>>
>>         for j in eachindex(ϕ)
>>             ϕ[j] *= prop_x[j] * prop_e[j]
>>         end
>>         p_fft! * ϕ
>>         for j in eachindex(ϕ)
>>             ϕ[j] *= prop_p[j]
>>         end
>>         p_fft! \ ϕ
>>         for j in eachindex(ϕ)
>>             ϕ[j] *= prop_x[j] * prop_e[j]
>>         end
>>         ########## autocorrelation function σ(t)
>>         if flags[1] == 1
>>             for j in eachindex(ϕ)
>>                 σ[i] += conj(ϕg[j]) * ϕ[j]
>>             end
>>         end
>>         ########## dipole acceleration a(t)
>>         if flags[2] == 1
>>             for j in eachindex(ϕ)
>>                 a[i] += abs(ϕ[j])^2 * (pvpx[j] + 2ele[i])
>>             end
>>         end
>>         ########## ionization probability ip(t)
>>         if flags[3] == 1
>>             for j1 in n1:n2
>>                 for j2 in 1:ns
>>                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2
>>                 end
>>             end
>>             for j1 in [1:n1-1; n2+1:ns]
>>                 for j2 in n1:n2
>>                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2
>>                 end
>>             end
>>         end
>>         ########## get momentum
>>         if flags[4] == 1
>>             for j in eachindex(ϕo)
>>                 ϕo[j] = ϕ[j] * splitter[j] * exp( -im * A[i]*xplusy[j] ) 
>> **********************************211
>>             end
>>             for j in eachindex(p)
>>                 pp[j] = p[j]^2 /2 * (nt-i) - p[j] *sum( A[i:nt] ) + sum( 
>> A²[1:nt] ) /2 ******************214
>>             end
>>             for j2 in 1:ns
>>                 for j1 in 1:ns
>>                     ϕo[j1, j2] = ϕo[j1, j2] * exp( -im * (pp[j1] + 
>> pp[j2]) * dt)************************218
>>                 end
>>             end
>>             p_fft! * ϕo
>>             for j in eachindex(ϕp)
>>                 ϕp[j] += ϕo[j]
>>             end
>>         end
>>
>>         ########## absorb boundary
>>         if mod(i, 300) == 0
>>             for j in eachindex(ϕ)
>>                 ϕ[j] *= absorb[j]
>>             end
>>         end
>>
>>         if (mod(i, 500) == 0)
>>             println("i = $i")
>>             flush(STDOUT)
>>         end
>>     end
>>     σ *= dx^2
>>     a *= dx^2
>>     ip *= dx^2
>>
>>     save("data/fs.jld", "ϕ", ϕ)
>>     if flags[1] == 1
>>         save("data/sigma.jld", "σ", σ)
>>     end
>>     if flags[2] == 1
>>         save("data/a.jld", "a", a)
>>     end
>>     if flags[3] == 1
>>         save("data/ip.jld", "ip", ip)
>>     end
>>     if flags[4] == 1
>>         save("data/pf.jld", "ϕp", ϕp)
>>     end
>>
>>     #return σ, a, ip, ϕ
>>     nothing
>> end
>>
>>
>>
>

Reply via email to