From: Dave Hansen <dave.han...@linux.intel.com>

This spells out all of the pkey-related system calls that we have
and provides some example code fragments to demonstrate how we
expect them to be used.

Signed-off-by: Dave Hansen <dave.han...@linux.intel.com>
Cc: linux-...@vger.kernel.org
Cc: linux...@kvack.org
Cc: x...@kernel.org
Cc: torva...@linux-foundation.org
Cc: a...@linux-foundation.org
---

 b/Documentation/x86/protection-keys.txt |   63 ++++++++++++++++++++++++++++++++
 1 file changed, 63 insertions(+)

diff -puN Documentation/x86/protection-keys.txt~pkeys-98-syscall-docs 
Documentation/x86/protection-keys.txt
--- a/Documentation/x86/protection-keys.txt~pkeys-98-syscall-docs       
2016-02-22 17:09:25.814409138 -0800
+++ b/Documentation/x86/protection-keys.txt     2016-02-22 17:09:25.818409320 
-0800
@@ -19,6 +19,69 @@ even though there is theoretically space
 permissions are enforced on data access only and have no effect on
 instruction fetches.
 
+=========================== Syscalls ===========================
+
+There are 5 system calls which directly interact with pkeys:
+
+       int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
+       int pkey_free(int pkey);
+       int sys_pkey_mprotect(unsigned long start, size_t len,
+                             unsigned long prot, int pkey);
+       unsigned long pkey_get(int pkey);
+       int pkey_set(int pkey, unsigned long access_rights);
+
+Before a pkey can be used, it must first be allocated with
+pkey_alloc().  An application may either call pkey_set() or the
+WRPKRU instruction directly in order to change access permissions
+to memory covered with a key.
+
+       int real_prot = PROT_READ|PROT_WRITE;
+       pkey = pkey_alloc(0, PKEY_DENY_WRITE);
+       ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 
0);
+       ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
+       ... application runs here
+
+Now, if the application needs to update the data at 'ptr', it can
+gain access, do the update, then remove its write access:
+
+       pkey_set(pkey, 0); // clear PKEY_DENY_WRITE
+       *ptr = foo; // assign something
+       pkey_set(pkey, PKEY_DENY_WRITE); // set PKEY_DENY_WRITE again
+
+Now when it frees the memory, it will also free the pkey since it
+is no longer in use:
+
+       munmap(ptr, PAGE_SIZE);
+       pkey_free(pkey);
+
+=========================== Behavior ===========================
+
+The kernel attempts to make protection keys consistent with the
+behavior of a plain mprotect().  For instance if you do this:
+
+       mprotect(ptr, size, PROT_NONE);
+       something(ptr);
+
+you can expect the same effects with protection keys when doing this:
+
+       sys_pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
+       sys_pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE);
+       something(ptr);
+
+That should be true whether something() is a direct access to 'ptr'
+like:
+
+       *ptr = foo;
+
+or when the kernel does the access on the application's behalf like
+with a read():
+
+       read(fd, ptr, 1);
+
+The kernel will send a SIGSEGV in both cases, but si_code will be set
+to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
+the plain mprotect() permissions are violated.
+
 =========================== Config Option ===========================
 
 This config option adds approximately 1.5kb of text. and 50 bytes of
_

Reply via email to