On Fri, Mar 18, 2016 at 04:58:31PM +0900, Minchan Kim wrote:
> <b430e9d1c6d4> "remove compressed copy from zram in-memory"
> applied swap_slot_free_notify call in *end_swap_bio_read* to
> remove duplicated memory between zram and memory.
> 
> However, with introducing rw_page in zram <8c7f01025f7b>
> "zram: implement rw_page operation of zram", it became void
> because rw_page doesn't need bio.
> 
> This patch restores the function for rw_page.
> 
> Signed-off-by: Minchan Kim <[email protected]>
> ---
>  mm/page_io.c | 93 
> ++++++++++++++++++++++++++++++++----------------------------
>  1 file changed, 50 insertions(+), 43 deletions(-)
> 
> diff --git a/mm/page_io.c b/mm/page_io.c
> index ff74e512f029..18aac7819cc9 100644
> --- a/mm/page_io.c
> +++ b/mm/page_io.c
> @@ -66,6 +66,54 @@ void end_swap_bio_write(struct bio *bio)
>       bio_put(bio);
>  }
>  
> +static void swap_slot_free_notify(struct page *page)
> +{
> +     struct swap_info_struct *sis;
> +     struct gendisk *disk;
> +
> +     /*
> +      * There is no guarantee that the page is in swap cache - the software
> +      * suspend code (at least) uses end_swap_bio_read() against a non-
> +      * swapcache page.  So we must check PG_swapcache before proceeding with
> +      * this optimization.
> +      */
> +     if (unlikely(!PageSwapCache(page)))
> +             return;
> +
> +     sis = page_swap_info(page);
> +     if (!(sis->flags & SWP_BLKDEV))
> +             return;
> +
> +     /*
> +      * The swap subsystem performs lazy swap slot freeing,
> +      * expecting that the page will be swapped out again.
> +      * So we can avoid an unnecessary write if the page
> +      * isn't redirtied.
> +      * This is good for real swap storage because we can
> +      * reduce unnecessary I/O and enhance wear-leveling
> +      * if an SSD is used as the as swap device.
> +      * But if in-memory swap device (eg zram) is used,
> +      * this causes a duplicated copy between uncompressed
> +      * data in VM-owned memory and compressed data in
> +      * zram-owned memory.  So let's free zram-owned memory
> +      * and make the VM-owned decompressed page *dirty*,
> +      * so the page should be swapped out somewhere again if
> +      * we again wish to reclaim it.
> +      */
> +     disk = sis->bdev->bd_disk;
> +     if (disk->fops->swap_slot_free_notify) {
> +             swp_entry_t entry;
> +             unsigned long offset;
> +
> +             entry.val = page_private(page);
> +             offset = swp_offset(entry);
> +
> +             SetPageDirty(page);
> +             disk->fops->swap_slot_free_notify(sis->bdev,
> +                             offset);
> +     }
> +}
> +
>  static void end_swap_bio_read(struct bio *bio)
>  {
>       struct page *page = bio->bi_io_vec[0].bv_page;
> @@ -81,49 +129,7 @@ static void end_swap_bio_read(struct bio *bio)
>       }
>  
>       SetPageUptodate(page);
> -
> -     /*
> -      * There is no guarantee that the page is in swap cache - the software
> -      * suspend code (at least) uses end_swap_bio_read() against a non-
> -      * swapcache page.  So we must check PG_swapcache before proceeding with
> -      * this optimization.
> -      */
> -     if (likely(PageSwapCache(page))) {
> -             struct swap_info_struct *sis;
> -
> -             sis = page_swap_info(page);
> -             if (sis->flags & SWP_BLKDEV) {
> -                     /*
> -                      * The swap subsystem performs lazy swap slot freeing,
> -                      * expecting that the page will be swapped out again.
> -                      * So we can avoid an unnecessary write if the page
> -                      * isn't redirtied.
> -                      * This is good for real swap storage because we can
> -                      * reduce unnecessary I/O and enhance wear-leveling
> -                      * if an SSD is used as the as swap device.
> -                      * But if in-memory swap device (eg zram) is used,
> -                      * this causes a duplicated copy between uncompressed
> -                      * data in VM-owned memory and compressed data in
> -                      * zram-owned memory.  So let's free zram-owned memory
> -                      * and make the VM-owned decompressed page *dirty*,
> -                      * so the page should be swapped out somewhere again if
> -                      * we again wish to reclaim it.
> -                      */
> -                     struct gendisk *disk = sis->bdev->bd_disk;
> -                     if (disk->fops->swap_slot_free_notify) {
> -                             swp_entry_t entry;
> -                             unsigned long offset;
> -
> -                             entry.val = page_private(page);
> -                             offset = swp_offset(entry);
> -
> -                             SetPageDirty(page);
> -                             disk->fops->swap_slot_free_notify(sis->bdev,
> -                                             offset);
> -                     }
> -             }
> -     }
> -
> +     swap_slot_free_notify(page);
>  out:
>       unlock_page(page);
>       bio_put(bio);
> @@ -347,6 +353,7 @@ int swap_readpage(struct page *page)
>  
>       ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
>       if (!ret) {
> +             swap_slot_free_notify(page);
>               count_vm_event(PSWPIN);
>               return 0;
>       }

Hello,

You need to check PageUpdate() or something because bdev_read_page()
can be asynchronous.

BTW, something like as swap_slot_free_notify() which invalidate
backend of storage can also be possible for frontswap when
frontswap_load() succeed. Isn't it?

Thanks.

Reply via email to