The names of sched averages (including load_avg and util_avg) have
been changed and added in the past a couple of years, some of
the names are a bit confusing especially to people who first read them.
This patch attempts to make the names more self-explaining. And some
comments are updated too.

Signed-off-by: Yuyang Du <yuyang...@intel.com>
---
 kernel/sched/fair.c |  209 ++++++++++++++++++++++++++-------------------------
 1 file changed, 107 insertions(+), 102 deletions(-)

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index e803f11..74eaeab 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -660,13 +660,15 @@ static int select_idle_sibling(struct task_struct *p, int 
cpu);
 static unsigned long task_h_load(struct task_struct *p);
 
 /*
- * We choose a half-life close to 1 scheduling period.
- * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
- * dependent on this value.
+ * Note: everything in sched average calculation, including
+ * __decay_inv_multiply_N, __accumulated_sum_N, __accumulated_sum_N32,
+ * SCHED_AVG_MAX, and SCHED_AVG_MAX_N are all dependent on and only on
+ * (1) exponential decay, (2) a period of 1024*1024ns (~1ms), and (3)
+ * a half-life of 32 periods.
  */
-#define LOAD_AVG_PERIOD 32
-#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
-#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
+#define SCHED_AVG_HALFLIFE 32  /* number of periods as a half-life */
+#define SCHED_AVG_MAX 47742    /* maximum possible sched avg */
+#define SCHED_AVG_MAX_N 345    /* number of full periods to produce 
SCHED_AVG_MAX */
 
 /* Give new sched_entity start runnable values to heavy its load in infant 
time */
 void init_entity_runnable_average(struct sched_entity *se)
@@ -681,7 +683,7 @@ void init_entity_runnable_average(struct sched_entity *se)
         */
        sa->period_contrib = 1023;
        sa->load_avg = scale_load_down(se->load.weight);
-       sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
+       sa->load_sum = sa->load_avg * SCHED_AVG_MAX;
        /*
         * At this point, util_avg won't be used in select_task_rq_fair anyway
         */
@@ -731,7 +733,7 @@ void post_init_entity_util_avg(struct sched_entity *se)
                } else {
                        sa->util_avg = cap;
                }
-               sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
+               sa->util_sum = sa->util_avg * SCHED_AVG_MAX;
        }
 }
 
@@ -1834,7 +1836,7 @@ static u64 numa_get_avg_runtime(struct task_struct *p, 
u64 *period)
                *period = now - p->last_task_numa_placement;
        } else {
                delta = p->se.avg.load_sum / p->se.load.weight;
-               *period = LOAD_AVG_MAX;
+               *period = SCHED_AVG_MAX;
        }
 
        p->last_sum_exec_runtime = runtime;
@@ -2583,7 +2585,7 @@ static inline void update_cfs_shares(struct cfs_rq 
*cfs_rq)
 
 #ifdef CONFIG_SMP
 /* Precomputed fixed inverse multiplies for multiplication by y^n */
-static const u32 runnable_avg_yN_inv[] = {
+static const u32 __decay_inv_multiply_N[] = {
        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
@@ -2596,7 +2598,7 @@ static const u32 runnable_avg_yN_inv[] = {
  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
  * over-estimates when re-combining.
  */
-static const u32 runnable_avg_yN_sum[] = {
+static const u32 __accumulated_sum_N[] = {
            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
@@ -2612,16 +2614,18 @@ static const u32 __accumulated_sum_N32[] = {
 };
 
 /*
- * Approximate:
- *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
+ * val * y^n, where y^m ~= 0.5
+ *
+ * n is the number of periods past; a period is ~1ms
+ * m is called half-life in exponential decay; here it is 
SCHED_AVG_HALFLIFE=32.
  */
-static __always_inline u64 decay_load(u64 val, u64 n)
+static __always_inline u64 __decay_sum(u64 val, u64 n)
 {
        unsigned int local_n;
 
        if (!n)
                return val;
-       else if (unlikely(n > LOAD_AVG_PERIOD * 63))
+       else if (unlikely(n > SCHED_AVG_HALFLIFE * 63))
                return 0;
 
        /* after bounds checking we can collapse to 32-bit */
@@ -2634,36 +2638,36 @@ static __always_inline u64 decay_load(u64 val, u64 n)
         *
         * To achieve constant time decay_load.
         */
-       if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
-               val >>= local_n / LOAD_AVG_PERIOD;
-               local_n %= LOAD_AVG_PERIOD;
+       if (unlikely(local_n >= SCHED_AVG_HALFLIFE)) {
+               val >>= local_n / SCHED_AVG_HALFLIFE;
+               local_n %= SCHED_AVG_HALFLIFE;
        }
 
-       val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
+       val = mul_u64_u32_shr(val, __decay_inv_multiply_N[local_n], 32);
        return val;
 }
 
 /*
- * For updates fully spanning n periods, the contribution to runnable
- * average will be: \Sum 1024*y^n
+ * For updates fully spanning n periods, the accumulated contribution
+ * will be: \Sum 1024*y^n.
  *
- * We can compute this reasonably efficiently by combining:
- *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
+ * We can compute this efficiently by combining:
+ * y^32 = 1/2 with precomputed \Sum 1024*y^n   (where n < 32)
  */
-static u32 __compute_runnable_contrib(u64 n)
+static u32 __accumulate_sum(u64 n)
 {
        u32 contrib = 0;
 
-       if (likely(n <= LOAD_AVG_PERIOD))
-               return runnable_avg_yN_sum[n];
-       else if (unlikely(n >= LOAD_AVG_MAX_N))
-               return LOAD_AVG_MAX;
+       if (likely(n <= SCHED_AVG_HALFLIFE))
+               return __accumulated_sum_N[n];
+       else if (unlikely(n >= SCHED_AVG_MAX_N))
+               return SCHED_AVG_MAX;
 
-       /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
-       contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
-       n %= LOAD_AVG_PERIOD;
-       contrib = decay_load(contrib, n);
-       return contrib + runnable_avg_yN_sum[n];
+       /* Since n < SCHED_AVG_MAX_N, n/SCHED_AVG_HALFLIFE < 11 */
+       contrib = __accumulated_sum_N32[n/SCHED_AVG_HALFLIFE];
+       n %= SCHED_AVG_HALFLIFE;
+       contrib = __decay_sum(contrib, n);
+       return contrib + __accumulated_sum_N[n];
 }
 
 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT 
!= 10
@@ -2673,35 +2677,35 @@ static u32 __compute_runnable_contrib(u64 n)
 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 
 /*
- * We can represent the historical contribution to runnable average as the
- * coefficients of a geometric series.  To do this we sub-divide our runnable
- * history into segments of approximately 1ms (1024us); label the segment that
- * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
+ * We can represent the historical contribution to sched average as the
+ * coefficients of a geometric series.  To do this we divide the history
+ * into segments of approximately 1ms (1024*1024ns); label the segment that
+ * occurred N-1024us ago p_N, with p_0 corresponding to the current period, 
e.g.
  *
  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  *      p0            p1           p2
  *     (now)       (~1ms ago)  (~2ms ago)
  *
- * Let u_i denote the fraction of p_i that the entity was runnable.
+ * Let u_i denote the fraction of p_i whose state (runnable/running) we count.
  *
  * We then designate the fractions u_i as our co-efficients, yielding the
- * following representation of historical load:
+ * following representation of a sched metric:
  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  *
- * We choose y based on the with of a reasonably scheduling period, fixing:
- *   y^32 = 0.5
+ * We choose y based on a half-life of 32 periods (which is ~32ms):
+ *   y^32 = 0.5 => y = (0.5)^(1/32)
  *
- * This means that the contribution to load ~32ms ago (u_32) will be weighted
- * approximately half as much as the contribution to load within the last ms
- * (u_0).
+ * where 32 is the number of periods that a past period's contribution is
+ * halved. This means that the impact of a period every ~32ms ago will be
+ * as much as 50% of the previous value.
  *
  * When a period "rolls over" and we have new u_0`, multiplying the previous
  * sum again by y is sufficient to update:
- *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
- *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
+ *   avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
+ *       = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  */
 static __always_inline int
-__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
+__update_sched_avg(u64 now, int cpu, struct sched_avg *sa,
                  unsigned long weight, int running, struct cfs_rq *cfs_rq)
 {
        u64 delta, scaled_delta, periods;
@@ -2762,15 +2766,15 @@ __update_load_avg(u64 now, int cpu, struct sched_avg 
*sa,
                periods = delta / 1024;
                delta %= 1024;
 
-               sa->load_sum = decay_load(sa->load_sum, periods + 1);
+               sa->load_sum = __decay_sum(sa->load_sum, periods + 1);
                if (cfs_rq) {
                        cfs_rq->runnable_load_sum =
-                               decay_load(cfs_rq->runnable_load_sum, periods + 
1);
+                               __decay_sum(cfs_rq->runnable_load_sum, periods 
+ 1);
                }
-               sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
+               sa->util_sum = __decay_sum((u64)(sa->util_sum), periods + 1);
 
                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
-               contrib = __compute_runnable_contrib(periods);
+               contrib = __accumulate_sum(periods);
                contrib = cap_scale(contrib, scale_freq);
                if (weight) {
                        sa->load_sum += weight * contrib;
@@ -2794,12 +2798,12 @@ __update_load_avg(u64 now, int cpu, struct sched_avg 
*sa,
        sa->period_contrib += delta;
 
        if (decayed) {
-               sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
+               sa->load_avg = div_u64(sa->load_sum, SCHED_AVG_MAX);
                if (cfs_rq) {
                        cfs_rq->runnable_load_avg =
-                               div_u64(cfs_rq->runnable_load_sum, 
LOAD_AVG_MAX);
+                               div_u64(cfs_rq->runnable_load_sum, 
SCHED_AVG_MAX);
                }
-               sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
+               sa->util_avg = sa->util_sum / SCHED_AVG_MAX;
        }
 
        return decayed;
@@ -2867,8 +2871,8 @@ void set_task_rq_fair(struct sched_entity *se,
                p_last_update_time = prev->avg.last_update_time;
                n_last_update_time = next->avg.last_update_time;
 #endif
-               __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
-                                 &se->avg, 0, 0, NULL);
+               __update_sched_avg(p_last_update_time, cpu_of(rq_of(prev)),
+                                  &se->avg, 0, 0, NULL);
                se->avg.last_update_time = n_last_update_time;
        }
 }
@@ -2909,7 +2913,7 @@ static inline void cfs_rq_util_change(struct cfs_rq 
*cfs_rq)
 
 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
 static inline int
-update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
+update_cfs_rq_sched_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
 {
        struct sched_avg *sa = &cfs_rq->avg;
        int decayed, removed_load = 0, removed_util = 0;
@@ -2917,18 +2921,18 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, 
bool update_freq)
        if (atomic_long_read(&cfs_rq->removed_load_avg)) {
                s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
                sa->load_avg = max_t(long, sa->load_avg - r, 0);
-               sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
+               sa->load_sum = max_t(s64, sa->load_sum - r * SCHED_AVG_MAX, 0);
                removed_load = 1;
        }
 
        if (atomic_long_read(&cfs_rq->removed_util_avg)) {
                long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
                sa->util_avg = max_t(long, sa->util_avg - r, 0);
-               sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
+               sa->util_sum = max_t(s32, sa->util_sum - r * SCHED_AVG_MAX, 0);
                removed_util = 1;
        }
 
-       decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+       decayed = __update_sched_avg(now, cpu_of(rq_of(cfs_rq)), sa,
                scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, 
cfs_rq);
 
 #ifndef CONFIG_64BIT
@@ -2943,7 +2947,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, 
bool update_freq)
 }
 
 /* Update task and its cfs_rq load average */
-static inline void update_load_avg(struct sched_entity *se, int update_tg)
+static inline void update_sched_avg(struct sched_entity *se, int update_tg)
 {
        struct cfs_rq *cfs_rq = cfs_rq_of(se);
        u64 now = cfs_rq_clock_task(cfs_rq);
@@ -2954,15 +2958,15 @@ static inline void update_load_avg(struct sched_entity 
*se, int update_tg)
         * Track task load average for carrying it to new CPU after migrated, 
and
         * track group sched_entity load average for task_h_load calc in 
migration
         */
-       __update_load_avg(now, cpu, &se->avg,
-                         se->on_rq * scale_load_down(se->load.weight),
-                         cfs_rq->curr == se, NULL);
+       __update_sched_avg(now, cpu, &se->avg,
+                          se->on_rq * scale_load_down(se->load.weight),
+                          cfs_rq->curr == se, NULL);
 
-       if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
+       if (update_cfs_rq_sched_avg(now, cfs_rq, true) && update_tg)
                update_tg_load_avg(cfs_rq, 0);
 }
 
-static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity 
*se)
+static void attach_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity 
*se)
 {
        if (!sched_feat(ATTACH_AGE_LOAD))
                goto skip_aging;
@@ -2972,8 +2976,8 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, 
struct sched_entity *s
         * have aged the average right before clearing @last_update_time.
         */
        if (se->avg.last_update_time) {
-               __update_load_avg(cfs_rq->avg.last_update_time, 
cpu_of(rq_of(cfs_rq)),
-                                 &se->avg, 0, 0, NULL);
+               __update_sched_avg(cfs_rq->avg.last_update_time, 
cpu_of(rq_of(cfs_rq)),
+                                  &se->avg, 0, 0, NULL);
 
                /*
                 * XXX: we could have just aged the entire load away if we've 
been
@@ -2991,11 +2995,11 @@ skip_aging:
        cfs_rq_util_change(cfs_rq);
 }
 
-static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity 
*se)
+static void detach_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity 
*se)
 {
-       __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
-                         &se->avg, se->on_rq * 
scale_load_down(se->load.weight),
-                         cfs_rq->curr == se, NULL);
+       __update_sched_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
+                          &se->avg, se->on_rq * 
scale_load_down(se->load.weight),
+                          cfs_rq->curr == se, NULL);
 
        cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - 
se->avg.load_avg, 0);
        cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - 
se->avg.load_sum, 0);
@@ -3007,7 +3011,7 @@ static void detach_entity_load_avg(struct cfs_rq *cfs_rq, 
struct sched_entity *s
 
 /* Add the load generated by se into cfs_rq's load average */
 static inline void
-enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+enqueue_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        struct sched_avg *sa = &se->avg;
        u64 now = cfs_rq_clock_task(cfs_rq);
@@ -3015,18 +3019,18 @@ enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct 
sched_entity *se)
 
        migrated = !sa->last_update_time;
        if (!migrated) {
-               __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
-                       se->on_rq * scale_load_down(se->load.weight),
-                       cfs_rq->curr == se, NULL);
+               __update_sched_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+                                  se->on_rq * scale_load_down(se->load.weight),
+                                  cfs_rq->curr == se, NULL);
        }
 
-       decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
+       decayed = update_cfs_rq_sched_avg(now, cfs_rq, !migrated);
 
        cfs_rq->runnable_load_avg += sa->load_avg;
        cfs_rq->runnable_load_sum += sa->load_sum;
 
        if (migrated)
-               attach_entity_load_avg(cfs_rq, se);
+               attach_entity_sched_avg(cfs_rq, se);
 
        if (decayed || migrated)
                update_tg_load_avg(cfs_rq, 0);
@@ -3034,9 +3038,9 @@ enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct 
sched_entity *se)
 
 /* Remove the runnable load generated by se from cfs_rq's runnable load 
average */
 static inline void
-dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+dequeue_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       update_load_avg(se, 1);
+       update_sched_avg(se, 1);
 
        cfs_rq->runnable_load_avg =
                max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
@@ -3069,7 +3073,7 @@ static inline u64 cfs_rq_last_update_time(struct cfs_rq 
*cfs_rq)
  * Task first catches up with cfs_rq, and then subtract
  * itself from the cfs_rq (task must be off the queue now).
  */
-void remove_entity_load_avg(struct sched_entity *se)
+void remove_entity_sched_avg(struct sched_entity *se)
 {
        struct cfs_rq *cfs_rq = cfs_rq_of(se);
        u64 last_update_time;
@@ -3083,7 +3087,8 @@ void remove_entity_load_avg(struct sched_entity *se)
 
        last_update_time = cfs_rq_last_update_time(cfs_rq);
 
-       __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 
0, NULL);
+       __update_sched_avg(last_update_time, cpu_of(rq_of(cfs_rq)),
+                          &se->avg, 0, 0, NULL);
        atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
        atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
 }
@@ -3102,17 +3107,17 @@ static int idle_balance(struct rq *this_rq);
 
 #else /* CONFIG_SMP */
 
-static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
+static inline void update_sched_avg(struct sched_entity *se, int update_tg) {}
 static inline void
-enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+enqueue_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 static inline void
-dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline void remove_entity_load_avg(struct sched_entity *se) {}
+dequeue_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+static inline void remove_entity_sched_avg(struct sched_entity *se) {}
 
 static inline void
-attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+attach_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 static inline void
-detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+detach_entity_sched_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 
 static inline int idle_balance(struct rq *rq)
 {
@@ -3272,7 +3277,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity 
*se, int flags)
        if (renorm && !curr)
                se->vruntime += cfs_rq->min_vruntime;
 
-       enqueue_entity_load_avg(cfs_rq, se);
+       enqueue_entity_sched_avg(cfs_rq, se);
        account_entity_enqueue(cfs_rq, se);
        update_cfs_shares(cfs_rq);
 
@@ -3351,7 +3356,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity 
*se, int flags)
         * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
-       dequeue_entity_load_avg(cfs_rq, se);
+       dequeue_entity_sched_avg(cfs_rq, se);
 
        if (schedstat_enabled())
                update_stats_dequeue(cfs_rq, se, flags);
@@ -3431,7 +3436,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct 
sched_entity *se)
                if (schedstat_enabled())
                        update_stats_wait_end(cfs_rq, se);
                __dequeue_entity(cfs_rq, se);
-               update_load_avg(se, 1);
+               update_sched_avg(se, 1);
        }
 
        update_stats_curr_start(cfs_rq, se);
@@ -3535,7 +3540,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct 
sched_entity *prev)
                /* Put 'current' back into the tree. */
                __enqueue_entity(cfs_rq, prev);
                /* in !on_rq case, update occurred at dequeue */
-               update_load_avg(prev, 0);
+               update_sched_avg(prev, 0);
        }
        cfs_rq->curr = NULL;
 }
@@ -3551,7 +3556,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity 
*curr, int queued)
        /*
         * Ensure that runnable average is periodically updated.
         */
-       update_load_avg(curr, 1);
+       update_sched_avg(curr, 1);
        update_cfs_shares(cfs_rq);
 
 #ifdef CONFIG_SCHED_HRTICK
@@ -4424,7 +4429,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, 
int flags)
                if (cfs_rq_throttled(cfs_rq))
                        break;
 
-               update_load_avg(se, 1);
+               update_sched_avg(se, 1);
                update_cfs_shares(cfs_rq);
        }
 
@@ -4484,7 +4489,7 @@ static void dequeue_task_fair(struct rq *rq, struct 
task_struct *p, int flags)
                if (cfs_rq_throttled(cfs_rq))
                        break;
 
-               update_load_avg(se, 1);
+               update_sched_avg(se, 1);
                update_cfs_shares(cfs_rq);
        }
 
@@ -5370,7 +5375,7 @@ static void migrate_task_rq_fair(struct task_struct *p)
         * will result in the wakee task is less decayed, but giving the wakee 
more
         * load sounds not bad.
         */
-       remove_entity_load_avg(&p->se);
+       remove_entity_sched_avg(&p->se);
 
        /* Tell new CPU we are migrated */
        p->se.avg.last_update_time = 0;
@@ -5381,7 +5386,7 @@ static void migrate_task_rq_fair(struct task_struct *p)
 
 static void task_dead_fair(struct task_struct *p)
 {
-       remove_entity_load_avg(&p->se);
+       remove_entity_sched_avg(&p->se);
 }
 #endif /* CONFIG_SMP */
 
@@ -6262,7 +6267,7 @@ static void update_blocked_averages(int cpu)
                if (throttled_hierarchy(cfs_rq))
                        continue;
 
-               if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, 
true))
+               if (update_cfs_rq_sched_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, 
true))
                        update_tg_load_avg(cfs_rq, 0);
        }
        raw_spin_unlock_irqrestore(&rq->lock, flags);
@@ -6323,7 +6328,7 @@ static inline void update_blocked_averages(int cpu)
 
        raw_spin_lock_irqsave(&rq->lock, flags);
        update_rq_clock(rq);
-       update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
+       update_cfs_rq_sched_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
        raw_spin_unlock_irqrestore(&rq->lock, flags);
 }
 
@@ -8357,7 +8362,7 @@ static void detach_task_cfs_rq(struct task_struct *p)
        }
 
        /* Catch up with the cfs_rq and remove our load when we leave */
-       detach_entity_load_avg(cfs_rq, se);
+       detach_entity_sched_avg(cfs_rq, se);
 }
 
 static void attach_task_cfs_rq(struct task_struct *p)
@@ -8374,7 +8379,7 @@ static void attach_task_cfs_rq(struct task_struct *p)
 #endif
 
        /* Synchronize task with its cfs_rq */
-       attach_entity_load_avg(cfs_rq, se);
+       attach_entity_sched_avg(cfs_rq, se);
 
        if (!vruntime_normalized(p))
                se->vruntime += cfs_rq->min_vruntime;
@@ -8513,7 +8518,7 @@ void unregister_fair_sched_group(struct task_group *tg)
 
        for_each_possible_cpu(cpu) {
                if (tg->se[cpu])
-                       remove_entity_load_avg(tg->se[cpu]);
+                       remove_entity_sched_avg(tg->se[cpu]);
 
                /*
                 * Only empty task groups can be destroyed; so we can 
speculatively
-- 
1.7.9.5

Reply via email to