This patch creates a generic process container system based on (and
parallel top) the cpusets code.  At a coarse level it was created by
copying kernel/cpuset.c, doing s/cpuset/container/g, and stripping out any
code that was cpuset-specific rather than applicable to any process
container subsystem.

Signed-off-by: Paul Menage <[EMAIL PROTECTED]>

---
 Documentation/containers.txt |  229 +++++++
 fs/proc/base.c               |    7 
 include/linux/container.h    |   96 +++
 include/linux/sched.h        |    5 
 init/Kconfig                 |    9 
 init/main.c                  |    3 
 kernel/Makefile              |    1 
 kernel/container.c           | 1260 +++++++++++++++++++++++++++++++++++++++++++
 kernel/exit.c                |    2 
 kernel/fork.c                |    3 
 10 files changed, 1614 insertions(+), 1 deletion(-)

Index: container-2.6.20-new/fs/proc/base.c
===================================================================
--- container-2.6.20-new.orig/fs/proc/base.c
+++ container-2.6.20-new/fs/proc/base.c
@@ -68,6 +68,7 @@
 #include <linux/security.h>
 #include <linux/ptrace.h>
 #include <linux/seccomp.h>
+#include <linux/container.h>
 #include <linux/cpuset.h>
 #include <linux/audit.h>
 #include <linux/poll.h>
@@ -1870,6 +1871,9 @@ static struct pid_entry tgid_base_stuff[
 #ifdef CONFIG_CPUSETS
        REG("cpuset",     S_IRUGO, cpuset),
 #endif
+#ifdef CONFIG_CONTAINERS
+       REG("container",  S_IRUGO, container),
+#endif
        INF("oom_score",  S_IRUGO, oom_score),
        REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
 #ifdef CONFIG_AUDITSYSCALL
@@ -2151,6 +2155,9 @@ static struct pid_entry tid_base_stuff[]
 #ifdef CONFIG_CPUSETS
        REG("cpuset",    S_IRUGO, cpuset),
 #endif
+#ifdef CONFIG_CONTAINERS
+       REG("container",  S_IRUGO, container),
+#endif
        INF("oom_score", S_IRUGO, oom_score),
        REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
 #ifdef CONFIG_AUDITSYSCALL
Index: container-2.6.20-new/include/linux/container.h
===================================================================
--- /dev/null
+++ container-2.6.20-new/include/linux/container.h
@@ -0,0 +1,96 @@
+#ifndef _LINUX_CONTAINER_H
+#define _LINUX_CONTAINER_H
+/*
+ *  container interface
+ *
+ *  Copyright (C) 2003 BULL SA
+ *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
+ *
+ */
+
+#include <linux/sched.h>
+#include <linux/cpumask.h>
+#include <linux/nodemask.h>
+
+#ifdef CONFIG_CONTAINERS
+
+extern int number_of_containers;       /* How many containers are defined in 
system? */
+
+extern int container_init_early(void);
+extern int container_init(void);
+extern void container_init_smp(void);
+extern void container_fork(struct task_struct *p);
+extern void container_exit(struct task_struct *p);
+
+extern struct file_operations proc_container_operations;
+
+extern void container_lock(void);
+extern void container_unlock(void);
+
+extern void container_manage_lock(void);
+extern void container_manage_unlock(void);
+
+struct container {
+       unsigned long flags;            /* "unsigned long" so bitops work */
+
+       /*
+        * Count is atomic so can incr (fork) or decr (exit) without a lock.
+        */
+       atomic_t count;                 /* count tasks using this container */
+
+       /*
+        * We link our 'sibling' struct into our parent's 'children'.
+        * Our children link their 'sibling' into our 'children'.
+        */
+       struct list_head sibling;       /* my parent's children */
+       struct list_head children;      /* my children */
+
+       struct container *parent;       /* my parent */
+       struct dentry *dentry;          /* container fs entry */
+};
+
+/* struct cftype:
+ *
+ * The files in the container filesystem mostly have a very simple read/write
+ * handling, some common function will take care of it. Nevertheless some cases
+ * (read tasks) are special and therefore I define this structure for every
+ * kind of file.
+ *
+ *
+ * When reading/writing to a file:
+ *     - the container to use in file->f_dentry->d_parent->d_fsdata
+ *     - the 'cftype' of the file is file->f_dentry->d_fsdata
+ */
+
+struct inode;
+struct cftype {
+       char *name;
+       int private;
+       int (*open) (struct inode *inode, struct file *file);
+       ssize_t (*read) (struct container *cont, struct cftype *cft,
+                        struct file *file,
+                        char __user *buf, size_t nbytes, loff_t *ppos);
+       ssize_t (*write) (struct container *cont, struct cftype *cft,
+                         struct file *file,
+                         const char __user *buf, size_t nbytes, loff_t *ppos);
+       int (*release) (struct inode *inode, struct file *file);
+};
+
+int container_add_file(struct container *cont, const struct cftype *cft);
+
+int container_is_removed(const struct container *cont);
+
+#else /* !CONFIG_CONTAINERS */
+
+static inline int container_init_early(void) { return 0; }
+static inline int container_init(void) { return 0; }
+static inline void container_init_smp(void) {}
+static inline void container_fork(struct task_struct *p) {}
+static inline void container_exit(struct task_struct *p) {}
+
+static inline void container_lock(void) {}
+static inline void container_unlock(void) {}
+
+#endif /* !CONFIG_CONTAINERS */
+
+#endif /* _LINUX_CONTAINER_H */
Index: container-2.6.20-new/include/linux/sched.h
===================================================================
--- container-2.6.20-new.orig/include/linux/sched.h
+++ container-2.6.20-new/include/linux/sched.h
@@ -743,8 +743,8 @@ extern unsigned int max_cache_size;
 
 
 struct io_context;                     /* See blkdev.h */
+struct container;
 struct cpuset;
-
 #define NGROUPS_SMALL          32
 #define NGROUPS_PER_BLOCK      ((int)(PAGE_SIZE / sizeof(gid_t)))
 struct group_info {
@@ -1031,6 +1031,9 @@ struct task_struct {
        int cpuset_mems_generation;
        int cpuset_mem_spread_rotor;
 #endif
+#ifdef CONFIG_CONTAINERS
+       struct container *container;
+#endif
        struct robust_list_head __user *robust_list;
 #ifdef CONFIG_COMPAT
        struct compat_robust_list_head __user *compat_robust_list;
Index: container-2.6.20-new/init/Kconfig
===================================================================
--- container-2.6.20-new.orig/init/Kconfig
+++ container-2.6.20-new/init/Kconfig
@@ -238,6 +238,15 @@ config IKCONFIG_PROC
          This option enables access to the kernel configuration file
          through /proc/config.gz.
 
+config CONTAINERS
+       bool "Container support"
+       help
+         This option will let you create and manage process containers,
+         which can be used to aggregate multiple processes, e.g. for
+         the purposes of resource tracking.
+
+         Say N if unsure
+
 config CPUSETS
        bool "Cpuset support"
        depends on SMP
Index: container-2.6.20-new/init/main.c
===================================================================
--- container-2.6.20-new.orig/init/main.c
+++ container-2.6.20-new/init/main.c
@@ -39,6 +39,7 @@
 #include <linux/writeback.h>
 #include <linux/cpu.h>
 #include <linux/cpuset.h>
+#include <linux/container.h>
 #include <linux/efi.h>
 #include <linux/taskstats_kern.h>
 #include <linux/delayacct.h>
@@ -485,6 +486,7 @@ asmlinkage void __init start_kernel(void
        char * command_line;
        extern struct kernel_param __start___param[], __stop___param[];
 
+       container_init_early();
        smp_setup_processor_id();
 
        /*
@@ -608,6 +610,7 @@ asmlinkage void __init start_kernel(void
 #ifdef CONFIG_PROC_FS
        proc_root_init();
 #endif
+       container_init();
        cpuset_init();
        taskstats_init_early();
        delayacct_init();
Index: container-2.6.20-new/kernel/container.c
===================================================================
--- /dev/null
+++ container-2.6.20-new/kernel/container.c
@@ -0,0 +1,1260 @@
+/*
+ *  kernel/container.c
+ *
+ *  Generic process-grouping system.
+ *
+ *  Based originally on the cpuset system, extracted by Paul Menage
+ *  Copyright (C) 2006 Google, Inc
+ *
+ *  Copyright notices from the original cpuset code:
+ *  --------------------------------------------------
+ *  Copyright (C) 2003 BULL SA.
+ *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
+ *
+ *  Portions derived from Patrick Mochel's sysfs code.
+ *  sysfs is Copyright (c) 2001-3 Patrick Mochel
+ *
+ *  2003-10-10 Written by Simon Derr.
+ *  2003-10-22 Updates by Stephen Hemminger.
+ *  2004 May-July Rework by Paul Jackson.
+ *  ---------------------------------------------------
+ *
+ *  This file is subject to the terms and conditions of the GNU General Public
+ *  License.  See the file COPYING in the main directory of the Linux
+ *  distribution for more details.
+ */
+
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/container.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/kmod.h>
+#include <linux/list.h>
+#include <linux/mempolicy.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mount.h>
+#include <linux/namei.h>
+#include <linux/pagemap.h>
+#include <linux/proc_fs.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/security.h>
+#include <linux/slab.h>
+#include <linux/smp_lock.h>
+#include <linux/spinlock.h>
+#include <linux/stat.h>
+#include <linux/string.h>
+#include <linux/time.h>
+#include <linux/backing-dev.h>
+#include <linux/sort.h>
+
+#include <asm/uaccess.h>
+#include <asm/atomic.h>
+#include <linux/mutex.h>
+
+#define CONTAINER_SUPER_MAGIC          0x27e0eb
+
+/*
+ * Tracks how many containers are currently defined in system.
+ * When there is only one container (the root container) we can
+ * short circuit some hooks.
+ */
+int number_of_containers __read_mostly;
+
+/* bits in struct container flags field */
+typedef enum {
+       CONT_REMOVED,
+       CONT_NOTIFY_ON_RELEASE,
+} container_flagbits_t;
+
+/* convenient tests for these bits */
+inline int container_is_removed(const struct container *cont)
+{
+       return test_bit(CONT_REMOVED, &cont->flags);
+}
+
+static inline int notify_on_release(const struct container *cont)
+{
+       return test_bit(CONT_NOTIFY_ON_RELEASE, &cont->flags);
+}
+
+static struct container top_container = {
+       .count = ATOMIC_INIT(0),
+       .sibling = LIST_HEAD_INIT(top_container.sibling),
+       .children = LIST_HEAD_INIT(top_container.children),
+};
+
+static struct vfsmount *container_mount;
+static struct super_block *container_sb;
+
+/*
+ * There is one global container mutexes. We also require taking
+ * task_lock() when dereferencing a tasks container pointer.  See "The
+ * task_lock() exception", at the end of this comment.
+ *
+ * A task must hold container_mutex to modify containers.
+ *
+ * Any task can increment and decrement the count field without lock.
+ * So in general, code holding container_mutex can't rely on the count
+ * field not changing.  However, if the count goes to zero, then only
+ * attach_task() can increment it again.  Because a count of zero
+ * means that no tasks are currently attached, therefore there is no
+ * way a task attached to that container can fork (the other way to
+ * increment the count).  So code holding container_mutex can safely
+ * assume that if the count is zero, it will stay zero. Similarly, if
+ * a task holds container_mutex on a container with zero count, it
+ * knows that the container won't be removed, as container_rmdir()
+ * needs that mutex.
+ *
+ * The container_common_file_write handler for operations that modify
+ * the container hierarchy holds container_mutex across the entire operation,
+ * single threading all such container modifications across the system.
+ *
+ * The fork and exit callbacks container_fork() and container_exit(), don't
+ * (usually) take container_mutex.  These are the two most performance
+ * critical pieces of code here.  The exception occurs on container_exit(),
+ * when a task in a notify_on_release container exits.  Then container_mutex
+ * is taken, and if the container count is zero, a usermode call made
+ * to /sbin/container_release_agent with the name of the container (path
+ * relative to the root of container file system) as the argument.
+ *
+ * A container can only be deleted if both its 'count' of using tasks
+ * is zero, and its list of 'children' containers is empty.  Since all
+ * tasks in the system use _some_ container, and since there is always at
+ * least one task in the system (init, pid == 1), therefore, top_container
+ * always has either children containers and/or using tasks.  So we don't
+ * need a special hack to ensure that top_container cannot be deleted.
+ *
+ *     The task_lock() exception
+ *
+ * The need for this exception arises from the action of
+ * attach_task(), which overwrites one tasks container pointer with
+ * another.  It does so using container_mutexe, however there are
+ * several performance critical places that need to reference
+ * task->container without the expense of grabbing a system global
+ * mutex.  Therefore except as noted below, when dereferencing or, as
+ * in attach_task(), modifying a task'ss container pointer we use
+ * task_lock(), which acts on a spinlock (task->alloc_lock) already in
+ * the task_struct routinely used for such matters.
+ *
+ * P.S.  One more locking exception.  RCU is used to guard the
+ * update of a tasks container pointer by attach_task()
+ */
+
+static DEFINE_MUTEX(container_mutex);
+
+/*
+ * A couple of forward declarations required, due to cyclic reference loop:
+ *  container_mkdir -> container_create -> container_populate_dir -> 
container_add_file
+ *  -> container_create_file -> container_dir_inode_operations -> 
container_mkdir.
+ */
+
+static int container_mkdir(struct inode *dir, struct dentry *dentry, int mode);
+static int container_rmdir(struct inode *unused_dir, struct dentry *dentry);
+
+static struct backing_dev_info container_backing_dev_info = {
+       .ra_pages = 0,          /* No readahead */
+       .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
+};
+
+static struct inode *container_new_inode(mode_t mode)
+{
+       struct inode *inode = new_inode(container_sb);
+
+       if (inode) {
+               inode->i_mode = mode;
+               inode->i_uid = current->fsuid;
+               inode->i_gid = current->fsgid;
+               inode->i_blocks = 0;
+               inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+               inode->i_mapping->backing_dev_info = 
&container_backing_dev_info;
+       }
+       return inode;
+}
+
+static void container_diput(struct dentry *dentry, struct inode *inode)
+{
+       /* is dentry a directory ? if so, kfree() associated container */
+       if (S_ISDIR(inode->i_mode)) {
+               struct container *cont = dentry->d_fsdata;
+               BUG_ON(!(container_is_removed(cont)));
+               kfree(cont);
+       }
+       iput(inode);
+}
+
+static struct dentry_operations container_dops = {
+       .d_iput = container_diput,
+};
+
+static struct dentry *container_get_dentry(struct dentry *parent, const char 
*name)
+{
+       struct dentry *d = lookup_one_len(name, parent, strlen(name));
+       if (!IS_ERR(d))
+               d->d_op = &container_dops;
+       return d;
+}
+
+static void remove_dir(struct dentry *d)
+{
+       struct dentry *parent = dget(d->d_parent);
+
+       d_delete(d);
+       simple_rmdir(parent->d_inode, d);
+       dput(parent);
+}
+
+/*
+ * NOTE : the dentry must have been dget()'ed
+ */
+static void container_d_remove_dir(struct dentry *dentry)
+{
+       struct list_head *node;
+
+       spin_lock(&dcache_lock);
+       node = dentry->d_subdirs.next;
+       while (node != &dentry->d_subdirs) {
+               struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
+               list_del_init(node);
+               if (d->d_inode) {
+                       d = dget_locked(d);
+                       spin_unlock(&dcache_lock);
+                       d_delete(d);
+                       simple_unlink(dentry->d_inode, d);
+                       dput(d);
+                       spin_lock(&dcache_lock);
+               }
+               node = dentry->d_subdirs.next;
+       }
+       list_del_init(&dentry->d_u.d_child);
+       spin_unlock(&dcache_lock);
+       remove_dir(dentry);
+}
+
+static struct super_operations container_ops = {
+       .statfs = simple_statfs,
+       .drop_inode = generic_delete_inode,
+};
+
+static int container_fill_super(struct super_block *sb, void *unused_data,
+                                                       int unused_silent)
+{
+       struct inode *inode;
+       struct dentry *root;
+
+       sb->s_blocksize = PAGE_CACHE_SIZE;
+       sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
+       sb->s_magic = CONTAINER_SUPER_MAGIC;
+       sb->s_op = &container_ops;
+       container_sb = sb;
+
+       inode = container_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
+       if (inode) {
+               inode->i_op = &simple_dir_inode_operations;
+               inode->i_fop = &simple_dir_operations;
+               /* directories start off with i_nlink == 2 (for "." entry) */
+               inode->i_nlink++;
+       } else {
+               return -ENOMEM;
+       }
+
+       root = d_alloc_root(inode);
+       if (!root) {
+               iput(inode);
+               return -ENOMEM;
+       }
+       sb->s_root = root;
+       return 0;
+}
+
+static int container_get_sb(struct file_system_type *fs_type,
+                        int flags, const char *unused_dev_name,
+                        void *data, struct vfsmount *mnt)
+{
+       return get_sb_single(fs_type, flags, data, container_fill_super, mnt);
+}
+
+static struct file_system_type container_fs_type = {
+       .name = "container",
+       .get_sb = container_get_sb,
+       .kill_sb = kill_litter_super,
+};
+
+static inline struct container *__d_cont(struct dentry *dentry)
+{
+       return dentry->d_fsdata;
+}
+
+static inline struct cftype *__d_cft(struct dentry *dentry)
+{
+       return dentry->d_fsdata;
+}
+
+/*
+ * Call with container_mutex held.  Writes path of container into buf.
+ * Returns 0 on success, -errno on error.
+ */
+
+static int container_path(const struct container *cont, char *buf, int buflen)
+{
+       char *start;
+
+       start = buf + buflen;
+
+       *--start = '\0';
+       for (;;) {
+               int len = cont->dentry->d_name.len;
+               if ((start -= len) < buf)
+                       return -ENAMETOOLONG;
+               memcpy(start, cont->dentry->d_name.name, len);
+               cont = cont->parent;
+               if (!cont)
+                       break;
+               if (!cont->parent)
+                       continue;
+               if (--start < buf)
+                       return -ENAMETOOLONG;
+               *start = '/';
+       }
+       memmove(buf, start, buf + buflen - start);
+       return 0;
+}
+
+/*
+ * Notify userspace when a container is released, by running
+ * /sbin/container_release_agent with the name of the container (path
+ * relative to the root of container file system) as the argument.
+ *
+ * Most likely, this user command will try to rmdir this container.
+ *
+ * This races with the possibility that some other task will be
+ * attached to this container before it is removed, or that some other
+ * user task will 'mkdir' a child container of this container.  That's ok.
+ * The presumed 'rmdir' will fail quietly if this container is no longer
+ * unused, and this container will be reprieved from its death sentence,
+ * to continue to serve a useful existence.  Next time it's released,
+ * we will get notified again, if it still has 'notify_on_release' set.
+ *
+ * The final arg to call_usermodehelper() is 0, which means don't
+ * wait.  The separate /sbin/container_release_agent task is forked by
+ * call_usermodehelper(), then control in this thread returns here,
+ * without waiting for the release agent task.  We don't bother to
+ * wait because the caller of this routine has no use for the exit
+ * status of the /sbin/container_release_agent task, so no sense holding
+ * our caller up for that.
+ *
+ * When we had only one container mutex, we had to call this
+ * without holding it, to avoid deadlock when call_usermodehelper()
+ * allocated memory.  With two locks, we could now call this while
+ * holding container_mutex, but we still don't, so as to minimize
+ * the time container_mutex is held.
+ */
+
+static void container_release_agent(const char *pathbuf)
+{
+       char *argv[3], *envp[3];
+       int i;
+
+       if (!pathbuf)
+               return;
+
+       i = 0;
+       argv[i++] = "/sbin/container_release_agent";
+       argv[i++] = (char *)pathbuf;
+       argv[i] = NULL;
+
+       i = 0;
+       /* minimal command environment */
+       envp[i++] = "HOME=/";
+       envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
+       envp[i] = NULL;
+
+       call_usermodehelper(argv[0], argv, envp, 0);
+       kfree(pathbuf);
+}
+
+/*
+ * Either cont->count of using tasks transitioned to zero, or the
+ * cont->children list of child containers just became empty.  If this
+ * cont is notify_on_release() and now both the user count is zero and
+ * the list of children is empty, prepare container path in a kmalloc'd
+ * buffer, to be returned via ppathbuf, so that the caller can invoke
+ * container_release_agent() with it later on, once container_mutex is dropped.
+ * Call here with container_mutex held.
+ *
+ * This check_for_release() routine is responsible for kmalloc'ing
+ * pathbuf.  The above container_release_agent() is responsible for
+ * kfree'ing pathbuf.  The caller of these routines is responsible
+ * for providing a pathbuf pointer, initialized to NULL, then
+ * calling check_for_release() with container_mutex held and the address
+ * of the pathbuf pointer, then dropping container_mutex, then calling
+ * container_release_agent() with pathbuf, as set by check_for_release().
+ */
+
+static void check_for_release(struct container *cont, char **ppathbuf)
+{
+       if (notify_on_release(cont) && atomic_read(&cont->count) == 0 &&
+           list_empty(&cont->children)) {
+               char *buf;
+
+               buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+               if (!buf)
+                       return;
+               if (container_path(cont, buf, PAGE_SIZE) < 0)
+                       kfree(buf);
+               else
+                       *ppathbuf = buf;
+       }
+}
+
+
+/*
+ * update_flag - read a 0 or a 1 in a file and update associated flag
+ * bit:        the bit to update (CONT_NOTIFY_ON_RELEASE)
+ * cont: the container to update
+ * buf:        the buffer where we read the 0 or 1
+ *
+ * Call with container_mutex held.
+ */
+
+static int update_flag(container_flagbits_t bit, struct container *cont, char 
*buf)
+{
+       int turning_on;
+
+       turning_on = (simple_strtoul(buf, NULL, 10) != 0);
+
+       if (turning_on)
+               set_bit(bit, &cont->flags);
+       else
+               clear_bit(bit, &cont->flags);
+
+       return 0;
+}
+
+
+/*
+ * Attack task specified by pid in 'pidbuf' to container 'cont', possibly
+ * writing the path of the old container in 'ppathbuf' if it needs to be
+ * notified on release.
+ *
+ * Call holding container_mutex.  May take task_lock of the task 'pid'
+ * during call.
+ */
+
+static int attach_task(struct container *cont, char *pidbuf, char **ppathbuf)
+{
+       pid_t pid;
+       struct task_struct *tsk;
+       struct container *oldcont;
+       int retval;
+
+       if (sscanf(pidbuf, "%d", &pid) != 1)
+               return -EIO;
+
+       if (pid) {
+               read_lock(&tasklist_lock);
+
+               tsk = find_task_by_pid(pid);
+               if (!tsk || tsk->flags & PF_EXITING) {
+                       read_unlock(&tasklist_lock);
+                       return -ESRCH;
+               }
+
+               get_task_struct(tsk);
+               read_unlock(&tasklist_lock);
+
+               if ((current->euid) && (current->euid != tsk->uid)
+                   && (current->euid != tsk->suid)) {
+                       put_task_struct(tsk);
+                       return -EACCES;
+               }
+       } else {
+               tsk = current;
+               get_task_struct(tsk);
+       }
+
+       retval = security_task_setscheduler(tsk, 0, NULL);
+       if (retval) {
+               put_task_struct(tsk);
+               return retval;
+       }
+
+       task_lock(tsk);
+       oldcont = tsk->container;
+       if (!oldcont) {
+               task_unlock(tsk);
+               put_task_struct(tsk);
+               return -ESRCH;
+       }
+       atomic_inc(&cont->count);
+       rcu_assign_pointer(tsk->container, cont);
+       task_unlock(tsk);
+
+       put_task_struct(tsk);
+       synchronize_rcu();
+       if (atomic_dec_and_test(&oldcont->count))
+               check_for_release(oldcont, ppathbuf);
+       return 0;
+}
+
+/* The various types of files and directories in a container file system */
+
+typedef enum {
+       FILE_ROOT,
+       FILE_DIR,
+       FILE_NOTIFY_ON_RELEASE,
+       FILE_TASKLIST,
+} container_filetype_t;
+
+static ssize_t container_common_file_write(struct container *cont,
+                                          struct cftype *cft,
+                                          struct file *file,
+                                          const char __user *userbuf,
+                                          size_t nbytes, loff_t *unused_ppos)
+{
+       container_filetype_t type = cft->private;
+       char *buffer;
+       char *pathbuf = NULL;
+       int retval = 0;
+
+       /* Crude upper limit on largest legitimate cpulist user might write. */
+       if (nbytes > 100 + 6 * NR_CPUS)
+               return -E2BIG;
+
+       /* +1 for nul-terminator */
+       if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
+               return -ENOMEM;
+
+       if (copy_from_user(buffer, userbuf, nbytes)) {
+               retval = -EFAULT;
+               goto out1;
+       }
+       buffer[nbytes] = 0;     /* nul-terminate */
+
+       mutex_lock(&container_mutex);
+
+       if (container_is_removed(cont)) {
+               retval = -ENODEV;
+               goto out2;
+       }
+
+       switch (type) {
+       case FILE_NOTIFY_ON_RELEASE:
+               retval = update_flag(CONT_NOTIFY_ON_RELEASE, cont, buffer);
+               break;
+       case FILE_TASKLIST:
+               retval = attach_task(cont, buffer, &pathbuf);
+               break;
+       default:
+               retval = -EINVAL;
+               goto out2;
+       }
+
+       if (retval == 0)
+               retval = nbytes;
+out2:
+       mutex_unlock(&container_mutex);
+       container_release_agent(pathbuf);
+out1:
+       kfree(buffer);
+       return retval;
+}
+
+static ssize_t container_file_write(struct file *file, const char __user *buf,
+                                               size_t nbytes, loff_t *ppos)
+{
+       ssize_t retval = 0;
+       struct cftype *cft = __d_cft(file->f_dentry);
+       struct container *cont = __d_cont(file->f_dentry->d_parent);
+       if (!cft)
+               return -ENODEV;
+
+       /* special function ? */
+       if (cft->write)
+               retval = cft->write(cont, cft, file, buf, nbytes, ppos);
+       else
+               retval = -EINVAL;
+
+       return retval;
+}
+
+static ssize_t container_common_file_read(struct container *cont,
+                                         struct cftype *cft,
+                                         struct file *file,
+                                         char __user *buf,
+                                         size_t nbytes, loff_t *ppos)
+{
+       container_filetype_t type = cft->private;
+       char *page;
+       ssize_t retval = 0;
+       char *s;
+
+       if (!(page = (char *)__get_free_page(GFP_KERNEL)))
+               return -ENOMEM;
+
+       s = page;
+
+       switch (type) {
+       case FILE_NOTIFY_ON_RELEASE:
+               *s++ = notify_on_release(cont) ? '1' : '0';
+               break;
+       default:
+               retval = -EINVAL;
+               goto out;
+       }
+       *s++ = '\n';
+
+       retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
+out:
+       free_page((unsigned long)page);
+       return retval;
+}
+
+static ssize_t container_file_read(struct file *file, char __user *buf, size_t 
nbytes,
+                                                               loff_t *ppos)
+{
+       ssize_t retval = 0;
+       struct cftype *cft = __d_cft(file->f_dentry);
+       struct container *cont = __d_cont(file->f_dentry->d_parent);
+       if (!cft)
+               return -ENODEV;
+
+       /* special function ? */
+       if (cft->read)
+               retval = cft->read(cont, cft, file, buf, nbytes, ppos);
+       else
+               retval = -EINVAL;
+
+       return retval;
+}
+
+static int container_file_open(struct inode *inode, struct file *file)
+{
+       int err;
+       struct cftype *cft;
+
+       err = generic_file_open(inode, file);
+       if (err)
+               return err;
+
+       cft = __d_cft(file->f_dentry);
+       if (!cft)
+               return -ENODEV;
+       if (cft->open)
+               err = cft->open(inode, file);
+       else
+               err = 0;
+
+       return err;
+}
+
+static int container_file_release(struct inode *inode, struct file *file)
+{
+       struct cftype *cft = __d_cft(file->f_dentry);
+       if (cft->release)
+               return cft->release(inode, file);
+       return 0;
+}
+
+/*
+ * container_rename - Only allow simple rename of directories in place.
+ */
+static int container_rename(struct inode *old_dir, struct dentry *old_dentry,
+                           struct inode *new_dir, struct dentry *new_dentry)
+{
+       if (!S_ISDIR(old_dentry->d_inode->i_mode))
+               return -ENOTDIR;
+       if (new_dentry->d_inode)
+               return -EEXIST;
+       if (old_dir != new_dir)
+               return -EIO;
+       return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
+}
+
+static struct file_operations container_file_operations = {
+       .read = container_file_read,
+       .write = container_file_write,
+       .llseek = generic_file_llseek,
+       .open = container_file_open,
+       .release = container_file_release,
+};
+
+static struct inode_operations container_dir_inode_operations = {
+       .lookup = simple_lookup,
+       .mkdir = container_mkdir,
+       .rmdir = container_rmdir,
+       .rename = container_rename,
+};
+
+static int container_create_file(struct dentry *dentry, int mode)
+{
+       struct inode *inode;
+
+       if (!dentry)
+               return -ENOENT;
+       if (dentry->d_inode)
+               return -EEXIST;
+
+       inode = container_new_inode(mode);
+       if (!inode)
+               return -ENOMEM;
+
+       if (S_ISDIR(mode)) {
+               inode->i_op = &container_dir_inode_operations;
+               inode->i_fop = &simple_dir_operations;
+
+               /* start off with i_nlink == 2 (for "." entry) */
+               inode->i_nlink++;
+       } else if (S_ISREG(mode)) {
+               inode->i_size = 0;
+               inode->i_fop = &container_file_operations;
+       }
+
+       d_instantiate(dentry, inode);
+       dget(dentry);   /* Extra count - pin the dentry in core */
+       return 0;
+}
+
+/*
+ *     container_create_dir - create a directory for an object.
+ *     cont:   the container we create the directory for.
+ *             It must have a valid ->parent field
+ *             And we are going to fill its ->dentry field.
+ *     name:   The name to give to the container directory. Will be copied.
+ *     mode:   mode to set on new directory.
+ */
+
+static int container_create_dir(struct container *cont, const char *name, int 
mode)
+{
+       struct dentry *dentry = NULL;
+       struct dentry *parent;
+       int error = 0;
+
+       parent = cont->parent->dentry;
+       dentry = container_get_dentry(parent, name);
+       if (IS_ERR(dentry))
+               return PTR_ERR(dentry);
+       error = container_create_file(dentry, S_IFDIR | mode);
+       if (!error) {
+               dentry->d_fsdata = cont;
+               parent->d_inode->i_nlink++;
+               cont->dentry = dentry;
+       }
+       dput(dentry);
+
+       return error;
+}
+
+int container_add_file(struct container *cont, const struct cftype *cft)
+{
+       struct dentry *dir = cont->dentry;
+       struct dentry *dentry;
+       int error;
+
+       mutex_lock(&dir->d_inode->i_mutex);
+       dentry = container_get_dentry(dir, cft->name);
+       if (!IS_ERR(dentry)) {
+               error = container_create_file(dentry, 0644 | S_IFREG);
+               if (!error)
+                       dentry->d_fsdata = (void *)cft;
+               dput(dentry);
+       } else
+               error = PTR_ERR(dentry);
+       mutex_unlock(&dir->d_inode->i_mutex);
+       return error;
+}
+
+/*
+ * Stuff for reading the 'tasks' file.
+ *
+ * Reading this file can return large amounts of data if a container has
+ * *lots* of attached tasks. So it may need several calls to read(),
+ * but we cannot guarantee that the information we produce is correct
+ * unless we produce it entirely atomically.
+ *
+ * Upon tasks file open(), a struct ctr_struct is allocated, that
+ * will have a pointer to an array (also allocated here).  The struct
+ * ctr_struct * is stored in file->private_data.  Its resources will
+ * be freed by release() when the file is closed.  The array is used
+ * to sprintf the PIDs and then used by read().
+ */
+
+/* containers_tasks_read array */
+
+struct ctr_struct {
+       char *buf;
+       int bufsz;
+};
+
+/*
+ * Load into 'pidarray' up to 'npids' of the tasks using container 'cont'.
+ * Return actual number of pids loaded.  No need to task_lock(p)
+ * when reading out p->container, as we don't really care if it changes
+ * on the next cycle, and we are not going to try to dereference it.
+ */
+static int pid_array_load(pid_t *pidarray, int npids, struct container *cont)
+{
+       int n = 0;
+       struct task_struct *g, *p;
+
+       read_lock(&tasklist_lock);
+
+       do_each_thread(g, p) {
+               if (p->container == cont) {
+                       pidarray[n++] = pid_nr(task_pid(p));
+                       if (unlikely(n == npids))
+                               goto array_full;
+               }
+       } while_each_thread(g, p);
+
+array_full:
+       read_unlock(&tasklist_lock);
+       return n;
+}
+
+static int cmppid(const void *a, const void *b)
+{
+       return *(pid_t *)a - *(pid_t *)b;
+}
+
+/*
+ * Convert array 'a' of 'npids' pid_t's to a string of newline separated
+ * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
+ * count 'cnt' of how many chars would be written if buf were large enough.
+ */
+static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
+{
+       int cnt = 0;
+       int i;
+
+       for (i = 0; i < npids; i++)
+               cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
+       return cnt;
+}
+
+/*
+ * Handle an open on 'tasks' file.  Prepare a buffer listing the
+ * process id's of tasks currently attached to the container being opened.
+ *
+ * Does not require any specific container mutexes, and does not take any.
+ */
+static int container_tasks_open(struct inode *unused, struct file *file)
+{
+       struct container *cont = __d_cont(file->f_dentry->d_parent);
+       struct ctr_struct *ctr;
+       pid_t *pidarray;
+       int npids;
+       char c;
+
+       if (!(file->f_mode & FMODE_READ))
+               return 0;
+
+       ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
+       if (!ctr)
+               goto err0;
+
+       /*
+        * If container gets more users after we read count, we won't have
+        * enough space - tough.  This race is indistinguishable to the
+        * caller from the case that the additional container users didn't
+        * show up until sometime later on.
+        */
+       npids = atomic_read(&cont->count);
+       pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
+       if (!pidarray)
+               goto err1;
+
+       npids = pid_array_load(pidarray, npids, cont);
+       sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
+
+       /* Call pid_array_to_buf() twice, first just to get bufsz */
+       ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
+       ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
+       if (!ctr->buf)
+               goto err2;
+       ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
+
+       kfree(pidarray);
+       file->private_data = ctr;
+       return 0;
+
+err2:
+       kfree(pidarray);
+err1:
+       kfree(ctr);
+err0:
+       return -ENOMEM;
+}
+
+static ssize_t container_tasks_read(struct container *cont,
+                                   struct cftype *cft,
+                                   struct file *file, char __user *buf,
+                                   size_t nbytes, loff_t *ppos)
+{
+       struct ctr_struct *ctr = file->private_data;
+
+       if (*ppos + nbytes > ctr->bufsz)
+               nbytes = ctr->bufsz - *ppos;
+       if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
+               return -EFAULT;
+       *ppos += nbytes;
+       return nbytes;
+}
+
+static int container_tasks_release(struct inode *unused_inode, struct file 
*file)
+{
+       struct ctr_struct *ctr;
+
+       if (file->f_mode & FMODE_READ) {
+               ctr = file->private_data;
+               kfree(ctr->buf);
+               kfree(ctr);
+       }
+       return 0;
+}
+
+/*
+ * for the common functions, 'private' gives the type of file
+ */
+
+static struct cftype cft_tasks = {
+       .name = "tasks",
+       .open = container_tasks_open,
+       .read = container_tasks_read,
+       .write = container_common_file_write,
+       .release = container_tasks_release,
+       .private = FILE_TASKLIST,
+};
+
+static struct cftype cft_notify_on_release = {
+       .name = "notify_on_release",
+       .read = container_common_file_read,
+       .write = container_common_file_write,
+       .private = FILE_NOTIFY_ON_RELEASE,
+};
+
+static int container_populate_dir(struct container *cont)
+{
+       int err;
+
+       if ((err = container_add_file(cont, &cft_notify_on_release)) < 0)
+               return err;
+       if ((err = container_add_file(cont, &cft_tasks)) < 0)
+               return err;
+       return 0;
+}
+
+/*
+ *     container_create - create a container
+ *     parent: container that will be parent of the new container.
+ *     name:           name of the new container. Will be strcpy'ed.
+ *     mode:           mode to set on new inode
+ *
+ *     Must be called with the mutex on the parent inode held
+ */
+
+static long container_create(struct container *parent, const char *name, int 
mode)
+{
+       struct container *cont;
+       int err;
+
+       cont = kmalloc(sizeof(*cont), GFP_KERNEL);
+       if (!cont)
+               return -ENOMEM;
+
+       mutex_lock(&container_mutex);
+       cont->flags = 0;
+       if (notify_on_release(parent))
+               set_bit(CONT_NOTIFY_ON_RELEASE, &cont->flags);
+       atomic_set(&cont->count, 0);
+       INIT_LIST_HEAD(&cont->sibling);
+       INIT_LIST_HEAD(&cont->children);
+
+       cont->parent = parent;
+
+       list_add(&cont->sibling, &cont->parent->children);
+       number_of_containers++;
+
+       err = container_create_dir(cont, name, mode);
+       if (err < 0)
+               goto err_remove;
+
+       /*
+        * Release container_mutex before container_populate_dir() because it
+        * will down() this new directory's i_mutex and if we race with
+        * another mkdir, we might deadlock.
+        */
+       mutex_unlock(&container_mutex);
+
+       err = container_populate_dir(cont);
+       /* If err < 0, we have a half-filled directory - oh well ;) */
+       return 0;
+
+ err_remove:
+       list_del(&cont->sibling);
+       number_of_containers--;
+
+       mutex_unlock(&container_mutex);
+       kfree(cont);
+       return err;
+}
+
+static int container_mkdir(struct inode *dir, struct dentry *dentry, int mode)
+{
+       struct container *c_parent = dentry->d_parent->d_fsdata;
+
+       /* the vfs holds inode->i_mutex already */
+       return container_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
+}
+
+static int container_rmdir(struct inode *unused_dir, struct dentry *dentry)
+{
+       struct container *cont = dentry->d_fsdata;
+       struct dentry *d;
+       struct container *parent;
+       char *pathbuf = NULL;
+
+       /* the vfs holds both inode->i_mutex already */
+
+       mutex_lock(&container_mutex);
+       if (atomic_read(&cont->count) > 0) {
+               mutex_unlock(&container_mutex);
+               return -EBUSY;
+       }
+       if (!list_empty(&cont->children)) {
+               mutex_unlock(&container_mutex);
+               return -EBUSY;
+       }
+       parent = cont->parent;
+       set_bit(CONT_REMOVED, &cont->flags);
+       list_del(&cont->sibling);       /* delete my sibling from 
parent->children */
+       spin_lock(&cont->dentry->d_lock);
+       d = dget(cont->dentry);
+       cont->dentry = NULL;
+       spin_unlock(&d->d_lock);
+       container_d_remove_dir(d);
+       dput(d);
+       number_of_containers--;
+
+       if (list_empty(&parent->children))
+               check_for_release(parent, &pathbuf);
+       mutex_unlock(&container_mutex);
+       container_release_agent(pathbuf);
+       return 0;
+}
+
+/*
+ * container_init_early - probably not needed yet, but will be needed
+ * once cpusets are hooked into this code
+ */
+
+int __init container_init_early(void)
+{
+       struct task_struct *tsk = current;
+
+       tsk->container = &top_container;
+       return 0;
+}
+
+/**
+ * container_init - initialize containers at system boot
+ *
+ * Description: Initialize top_container and the container internal file 
system,
+ **/
+
+int __init container_init(void)
+{
+       struct dentry *root;
+       int err;
+
+       init_task.container = &top_container;
+
+       err = register_filesystem(&container_fs_type);
+       if (err < 0)
+               goto out;
+       container_mount = kern_mount(&container_fs_type);
+       if (IS_ERR(container_mount)) {
+               printk(KERN_ERR "container: could not mount!\n");
+               err = PTR_ERR(container_mount);
+               container_mount = NULL;
+               goto out;
+       }
+       root = container_mount->mnt_sb->s_root;
+       root->d_fsdata = &top_container;
+       root->d_inode->i_nlink++;
+       top_container.dentry = root;
+       root->d_inode->i_op = &container_dir_inode_operations;
+       number_of_containers = 1;
+       err = container_populate_dir(&top_container);
+out:
+       return err;
+}
+
+/**
+ * container_fork - attach newly forked task to its parents container.
+ * @tsk: pointer to task_struct of forking parent process.
+ *
+ * Description: A task inherits its parent's container at fork().
+ *
+ * A pointer to the shared container was automatically copied in fork.c
+ * by dup_task_struct().  However, we ignore that copy, since it was
+ * not made under the protection of task_lock(), so might no longer be
+ * a valid container pointer.  attach_task() might have already changed
+ * current->container, allowing the previously referenced container to
+ * be removed and freed.  Instead, we task_lock(current) and copy
+ * its present value of current->container for our freshly forked child.
+ *
+ * At the point that container_fork() is called, 'current' is the parent
+ * task, and the passed argument 'child' points to the child task.
+ **/
+
+void container_fork(struct task_struct *child)
+{
+       task_lock(current);
+       child->container = current->container;
+       atomic_inc(&child->container->count);
+       task_unlock(current);
+}
+
+/**
+ * container_exit - detach container from exiting task
+ * @tsk: pointer to task_struct of exiting process
+ *
+ * Description: Detach container from @tsk and release it.
+ *
+ * Note that containers marked notify_on_release force every task in
+ * them to take the global container_mutex mutex when exiting.
+ * This could impact scaling on very large systems.  Be reluctant to
+ * use notify_on_release containers where very high task exit scaling
+ * is required on large systems.
+ *
+ * Don't even think about derefencing 'cont' after the container use
+ * count goes to zero, except inside a critical section guarded by
+ * container_mutex.  Otherwise a zero container use count is a license
+ * to any other task to nuke the container immediately, via
+ * container_rmdir().
+ *
+ * We don't need to task_lock() this reference to tsk->container,
+ * because tsk is already marked PF_EXITING, so attach_task() won't
+ * mess with it, or task is a failed fork, never visible to attach_task.
+ *
+ * the_top_container_hack:
+ *
+ *    Set the exiting tasks container to the root container (top_container).
+ *
+ *    Don't leave a task unable to allocate memory, as that is an
+ *    accident waiting to happen should someone add a callout in
+ *    do_exit() after the container_exit() call that might allocate.
+ *    If a task tries to allocate memory with an invalid container,
+ *    it will oops in container_update_task_memory_state().
+ *
+ *    We call container_exit() while the task is still competent to
+ *    handle notify_on_release(), then leave the task attached to
+ *    the root container (top_container) for the remainder of its exit.
+ *
+ *    To do this properly, we would increment the reference count on
+ *    top_container, and near the very end of the kernel/exit.c do_exit()
+ *    code we would add a second container function call, to drop that
+ *    reference.  This would just create an unnecessary hot spot on
+ *    the top_container reference count, to no avail.
+ *
+ *    Normally, holding a reference to a container without bumping its
+ *    count is unsafe.   The container could go away, or someone could
+ *    attach us to a different container, decrementing the count on
+ *    the first container that we never incremented.  But in this case,
+ *    top_container isn't going away, and either task has PF_EXITING set,
+ *    which wards off any attach_task() attempts, or task is a failed
+ *    fork, never visible to attach_task.
+ *
+ *    Another way to do this would be to set the container pointer
+ *    to NULL here, and check in container_update_task_memory_state()
+ *    for a NULL pointer.  This hack avoids that NULL check, for no
+ *    cost (other than this way too long comment ;).
+ **/
+
+void container_exit(struct task_struct *tsk)
+{
+       struct container *cont;
+
+       cont = tsk->container;
+       tsk->container = &top_container;        /* the_top_container_hack - see 
above */
+
+       if (notify_on_release(cont)) {
+               char *pathbuf = NULL;
+
+               mutex_lock(&container_mutex);
+               if (atomic_dec_and_test(&cont->count))
+                       check_for_release(cont, &pathbuf);
+               mutex_unlock(&container_mutex);
+               container_release_agent(pathbuf);
+       } else {
+               atomic_dec(&cont->count);
+       }
+}
+
+/*
+ * proc_container_show()
+ *  - Print tasks container path into seq_file.
+ *  - Used for /proc/<pid>/container.
+ *  - No need to task_lock(tsk) on this tsk->container reference, as it
+ *    doesn't really matter if tsk->container changes after we read it,
+ *    and we take container_mutex, keeping attach_task() from changing it
+ *    anyway.  No need to check that tsk->container != NULL, thanks to
+ *    the_top_container_hack in container_exit(), which sets an exiting tasks
+ *    container to top_container.
+ */
+static int proc_container_show(struct seq_file *m, void *v)
+{
+       struct pid *pid;
+       struct task_struct *tsk;
+       char *buf;
+       int retval;
+
+       retval = -ENOMEM;
+       buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+       if (!buf)
+               goto out;
+
+       retval = -ESRCH;
+       pid = m->private;
+       tsk = get_pid_task(pid, PIDTYPE_PID);
+       if (!tsk)
+               goto out_free;
+
+       retval = -EINVAL;
+       mutex_lock(&container_mutex);
+
+       retval = container_path(tsk->container, buf, PAGE_SIZE);
+       if (retval < 0)
+               goto out_unlock;
+       seq_puts(m, buf);
+       seq_putc(m, '\n');
+out_unlock:
+       mutex_unlock(&container_mutex);
+       put_task_struct(tsk);
+out_free:
+       kfree(buf);
+out:
+       return retval;
+}
+
+static int container_open(struct inode *inode, struct file *file)
+{
+       struct pid *pid = PROC_I(inode)->pid;
+       return single_open(file, proc_container_show, pid);
+}
+
+struct file_operations proc_container_operations = {
+       .open           = container_open,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = single_release,
+};
Index: container-2.6.20-new/kernel/exit.c
===================================================================
--- container-2.6.20-new.orig/kernel/exit.c
+++ container-2.6.20-new/kernel/exit.c
@@ -31,6 +31,7 @@
 #include <linux/taskstats_kern.h>
 #include <linux/delayacct.h>
 #include <linux/cpuset.h>
+#include <linux/container.h>
 #include <linux/syscalls.h>
 #include <linux/signal.h>
 #include <linux/posix-timers.h>
@@ -927,6 +928,7 @@ fastcall NORET_TYPE void do_exit(long co
        __exit_fs(tsk);
        exit_thread();
        cpuset_exit(tsk);
+       container_exit(tsk);
        exit_keys(tsk);
 
        if (group_dead && tsk->signal->leader)
Index: container-2.6.20-new/kernel/fork.c
===================================================================
--- container-2.6.20-new.orig/kernel/fork.c
+++ container-2.6.20-new/kernel/fork.c
@@ -31,6 +31,7 @@
 #include <linux/capability.h>
 #include <linux/cpu.h>
 #include <linux/cpuset.h>
+#include <linux/container.h>
 #include <linux/security.h>
 #include <linux/swap.h>
 #include <linux/syscalls.h>
@@ -1058,6 +1059,7 @@ static struct task_struct *copy_process(
        p->io_context = NULL;
        p->io_wait = NULL;
        p->audit_context = NULL;
+       container_fork(p);
        cpuset_fork(p);
 #ifdef CONFIG_NUMA
        p->mempolicy = mpol_copy(p->mempolicy);
@@ -1291,6 +1293,7 @@ bad_fork_cleanup_policy:
 bad_fork_cleanup_cpuset:
 #endif
        cpuset_exit(p);
+       container_exit(p);
 bad_fork_cleanup_delays_binfmt:
        delayacct_tsk_free(p);
        if (p->binfmt)
Index: container-2.6.20-new/kernel/Makefile
===================================================================
--- container-2.6.20-new.orig/kernel/Makefile
+++ container-2.6.20-new/kernel/Makefile
@@ -35,6 +35,7 @@ obj-$(CONFIG_PM) += power/
 obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
 obj-$(CONFIG_KEXEC) += kexec.o
 obj-$(CONFIG_COMPAT) += compat.o
+obj-$(CONFIG_CONTAINERS) += container.o
 obj-$(CONFIG_CPUSETS) += cpuset.o
 obj-$(CONFIG_IKCONFIG) += configs.o
 obj-$(CONFIG_STOP_MACHINE) += stop_machine.o
Index: container-2.6.20-new/Documentation/containers.txt
===================================================================
--- /dev/null
+++ container-2.6.20-new/Documentation/containers.txt
@@ -0,0 +1,229 @@
+                               CONTAINERS
+                               -------
+
+Written by Paul Menage <[EMAIL PROTECTED]> based on Documentation/cpusets.txt
+
+Original copyright in cpusets.txt:
+Portions Copyright (C) 2004 BULL SA.
+Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+Modified by Paul Jackson <[EMAIL PROTECTED]>
+Modified by Christoph Lameter <[EMAIL PROTECTED]>
+
+CONTENTS:
+=========
+
+1. Containers
+  1.1 What are containers ?
+  1.2 Why are containers needed ?
+  1.3 How are containers implemented ?
+  1.4 What does notify_on_release do ?
+  1.5 How do I use containers ?
+2. Usage Examples and Syntax
+  2.1 Basic Usage
+  2.2 Attaching processes
+3. Questions
+4. Contact
+
+1. Containers
+==========
+
+1.1 What are containers ?
+----------------------
+
+Containers provide a mechanism for aggregating sets of tasks, and all
+their children, into hierarchical groups.
+
+Each task has a pointer to a container.  Multiple tasks may reference
+the same container. User level code may create and destroy containers
+by name in the container virtual file system, specify and query to
+which container a task is assigned, and list the task pids assigned to
+a container.
+
+On their own, the only use for containers is for simple job
+tracking. The intention is that other subsystems, such as cpusets (see
+Documentation/cpusets.txt) hook into the generic container support to
+provide new attributes for containers, such as accounting/limiting the
+resources which processes in a container can access.
+
+1.2 Why are containers needed ?
+----------------------------
+
+There are multiple efforts to provide process aggregations in the
+Linux kernel, mainly for resource tracking purposes. Such efforts
+include cpusets, CKRM/ResGroups, and UserBeanCounters. These all
+require the basic notion of a grouping of processes, with newly forked
+processes ending in the same group (container) as their parent
+process.
+
+The kernel container patch provides the minimum essential kernel
+mechanisms required to efficiently implement such groups. It has
+minimal impact on the system fast paths, and provides hooks for
+specific subsystems such as cpusets to provide additional behaviour as
+desired.
+
+
+1.3 How are containers implemented ?
+---------------------------------
+
+Containers extends the kernel as follows:
+
+ - Each task in the system is attached to a container, via a pointer
+   in the task structure to a reference counted container structure.
+ - The hierarchy of containers can be mounted at /dev/container (or
+   elsewhere), for browsing and manipulation from user space.
+ - You can list all the tasks (by pid) attached to any container.
+
+The implementation of containers requires a few, simple hooks
+into the rest of the kernel, none in performance critical paths:
+
+ - in init/main.c, to initialize the root container at system boot.
+ - in fork and exit, to attach and detach a task from its container.
+
+In addition a new file system, of type "container" may be mounted,
+typically at /dev/container, to enable browsing and modifying the containers
+presently known to the kernel.  No new system calls are added for
+containers - all support for querying and modifying containers is via
+this container file system.
+
+Each task under /proc has an added file named 'container', displaying
+the container name, as the path relative to the root of the container file
+system.
+
+Each container is represented by a directory in the container file system
+containing the following files describing that container:
+
+ - tasks: list of tasks (by pid) attached to that container
+ - notify_on_release flag: run /sbin/container_release_agent on exit?
+
+Other subsystems such as cpusets may add additional files in each
+container dir
+
+New containers are created using the mkdir system call or shell
+command.  The properties of a container, such as its flags, are
+modified by writing to the appropriate file in that containers
+directory, as listed above.
+
+The named hierarchical structure of nested containers allows partitioning
+a large system into nested, dynamically changeable, "soft-partitions".
+
+The attachment of each task, automatically inherited at fork by any
+children of that task, to a container allows organizing the work load
+on a system into related sets of tasks.  A task may be re-attached to
+any other container, if allowed by the permissions on the necessary
+container file system directories.
+
+The use of a Linux virtual file system (vfs) to represent the
+container hierarchy provides for a familiar permission and name space
+for containers, with a minimum of additional kernel code.
+
+1.4 What does notify_on_release do ?
+------------------------------------
+
+If the notify_on_release flag is enabled (1) in a container, then whenever
+the last task in the container leaves (exits or attaches to some other
+container) and the last child container of that container is removed, then
+the kernel runs the command /sbin/container_release_agent, supplying the
+pathname (relative to the mount point of the container file system) of the
+abandoned container.  This enables automatic removal of abandoned containers.
+The default value of notify_on_release in the root container at system
+boot is disabled (0).  The default value of other containers at creation
+is the current value of their parents notify_on_release setting.
+
+1.5 How do I use containers ?
+--------------------------
+
+To start a new job that is to be contained within a container, the steps are:
+
+ 1) mkdir /dev/container
+ 2) mount -t container container /dev/container
+ 3) Create the new container by doing mkdir's and write's (or echo's) in
+    the /dev/container virtual file system.
+ 4) Start a task that will be the "founding father" of the new job.
+ 5) Attach that task to the new container by writing its pid to the
+    /dev/container tasks file for that container.
+ 6) fork, exec or clone the job tasks from this founding father task.
+
+For example, the following sequence of commands will setup a container
+named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
+and then start a subshell 'sh' in that container:
+
+  mount -t container none /dev/container
+  cd /dev/container
+  mkdir Charlie
+  cd Charlie
+  /bin/echo $$ > tasks
+  sh
+  # The subshell 'sh' is now running in container Charlie
+  # The next line should display '/Charlie'
+  cat /proc/self/container
+
+In the future, a C library interface to containers will likely be
+available.  For now, the only way to query or modify containers is
+via the container file system, using the various cd, mkdir, echo, cat,
+rmdir commands from the shell, or their equivalent from C.
+
+2. Usage Examples and Syntax
+============================
+
+2.1 Basic Usage
+---------------
+
+Creating, modifying, using the containers can be done through the container
+virtual filesystem.
+
+To mount it, type:
+# mount -t container none /dev/container
+
+Then under /dev/container you can find a tree that corresponds to the
+tree of the containers in the system. For instance, /dev/container
+is the container that holds the whole system.
+
+If you want to create a new container under /dev/container:
+# cd /dev/container
+# mkdir my_container
+
+Now you want to do something with this container.
+# cd my_container
+
+In this directory you can find several files:
+# ls
+notify_on_release  tasks
+
+Now attach your shell to this container:
+# /bin/echo $$ > tasks
+
+You can also create containers inside your container by using mkdir in this
+directory.
+# mkdir my_sub_cs
+
+To remove a container, just use rmdir:
+# rmdir my_sub_cs
+This will fail if the container is in use (has containers inside, or has
+processes attached).
+
+2.2 Attaching processes
+-----------------------
+
+# /bin/echo PID > tasks
+
+Note that it is PID, not PIDs. You can only attach ONE task at a time.
+If you have several tasks to attach, you have to do it one after another:
+
+# /bin/echo PID1 > tasks
+# /bin/echo PID2 > tasks
+       ...
+# /bin/echo PIDn > tasks
+
+
+3. Questions
+============
+
+Q: what's up with this '/bin/echo' ?
+A: bash's builtin 'echo' command does not check calls to write() against
+   errors. If you use it in the container file system, you won't be
+   able to tell whether a command succeeded or failed.
+
+Q: When I attach processes, only the first of the line gets really attached !
+A: We can only return one error code per call to write(). So you should also
+   put only ONE pid.
+

--
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to