On Wed, Aug 05, 2020 at 09:54:00AM +0800, Coly Li wrote:
> On 2020/8/5 07:58, Ming Lei wrote:
> > On Tue, Aug 04, 2020 at 10:23:32PM +0800, Coly Li wrote:
> >> When some buggy driver doesn't set its queue->limits.discard_granularity
> >> (e.g. current loop device driver), discard at LBA 0 on such device will
> >> trigger a kernel BUG() panic from block/blk-mq.c:563.
> >>
> >> [  955.565006][   C39] ------------[ cut here ]------------
> >> [  955.559660][   C39] invalid opcode: 0000 [#1] SMP NOPTI
> >> [  955.622171][   C39] CPU: 39 PID: 248 Comm: ksoftirqd/39 Tainted: G      
> >>       E     5.8.0-default+ #40
> >> [  955.622171][   C39] Hardware name: Lenovo ThinkSystem SR650 
> >> -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE160M-2.70]- 07/17/2020
> >> [  955.622175][   C39] RIP: 0010:blk_mq_end_request+0x107/0x110
> >> [  955.622177][   C39] Code: 48 8b 03 e9 59 ff ff ff 48 89 df 5b 5d 41 5c 
> >> e9 9f ed ff ff 48 8b 35 98 3c f4 00 48 83 c7 10 48 83 c6 19 e8 cb 56 c9 ff 
> >> eb cb <0f> 0b 0f 1f 80 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 56 41 54
> >> [  955.622179][   C39] RSP: 0018:ffffb1288701fe28 EFLAGS: 00010202
> >> [  955.749277][   C39] RAX: 0000000000000001 RBX: ffff956fffba5080 RCX: 
> >> 0000000000004003
> >> [  955.749278][   C39] RDX: 0000000000000003 RSI: 0000000000000000 RDI: 
> >> 0000000000000000
> >> [  955.749279][   C39] RBP: 0000000000000000 R08: 0000000000000000 R09: 
> >> 0000000000000000
> >> [  955.749279][   C39] R10: ffffb1288701fd28 R11: 0000000000000001 R12: 
> >> ffffffffa8e05160
> >> [  955.749280][   C39] R13: 0000000000000004 R14: 0000000000000004 R15: 
> >> ffffffffa7ad3a1e
> >> [  955.749281][   C39] FS:  0000000000000000(0000) 
> >> GS:ffff95bfbda00000(0000) knlGS:0000000000000000
> >> [  955.749282][   C39] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> >> [  955.749282][   C39] CR2: 00007f6f0ef766a8 CR3: 0000005a37012002 CR4: 
> >> 00000000007606e0
> >> [  955.749283][   C39] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 
> >> 0000000000000000
> >> [  955.749284][   C39] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 
> >> 0000000000000400
> >> [  955.749284][   C39] PKRU: 55555554
> >> [  955.749285][   C39] Call Trace:
> >> [  955.749290][   C39]  blk_done_softirq+0x99/0xc0
> >> [  957.550669][   C39]  __do_softirq+0xd3/0x45f
> >> [  957.550677][   C39]  ? smpboot_thread_fn+0x2f/0x1e0
> >> [  957.550679][   C39]  ? smpboot_thread_fn+0x74/0x1e0
> >> [  957.550680][   C39]  ? smpboot_thread_fn+0x14e/0x1e0
> >> [  957.550684][   C39]  run_ksoftirqd+0x30/0x60
> >> [  957.550687][   C39]  smpboot_thread_fn+0x149/0x1e0
> >> [  957.886225][   C39]  ? sort_range+0x20/0x20
> >> [  957.886226][   C39]  kthread+0x137/0x160
> >> [  957.886228][   C39]  ? kthread_park+0x90/0x90
> >> [  957.886231][   C39]  ret_from_fork+0x22/0x30
> >> [  959.117120][   C39] ---[ end trace 3dacdac97e2ed164 ]---
> >>
> >> This is the procedure to reproduce the panic,
> >>   # modprobe scsi_debug delay=0 dev_size_mb=2048 max_queue=1
> >>   # losetup -f /dev/nvme0n1 --direct-io=on
> >>   # blkdiscard /dev/loop0 -o 0 -l 0x200
> >>
> >> This is how the BUG() panic triggered by __blkdev_issue_discard(),
> >> - For a NVMe SSD backing loop device, the driver does not initialize
> >>   its queue->limits.discard_granularity and leaves it to 0.
> >> - When discard on LBA 0 of the loop device, __blkdev_issue_discard()
> >>   is called before loop device driver code.
> >> - Inside __blkdev_issue_discard(), when calculating value of
> >>   granularity_aligned_lba by
> >>    granularity_aligned_lba = round_up(sector_mapped,
> >>                    q->limits.discard_granularity >> SECTOR_SHIFT);
> >>   because sector_mapped is 0 (at LBA 0 and no partition offset), and
> >>   q->limits.discard_granularity is 0 (by the buggy loop driver), the
> >>   calculated granularity_aligned_lba is 0.
> >> - The inline function bio_aligned_discard_max_sectors() is defined as
> >>    return round_down(UINT_MAX, q->limits.discard_granularity) >>
> >>                    SECTOR_SHIFT;
> >>    when q->limits.discard_granularity is 0 from loop device driver, the
> >>    above calculation returns value 0.
> >> - Now granularity_aligned_lba and sctor_mapped are 0, req_sectors is
> >>   calculated by the following lines in __blkdev_issue_discard(),
> >>    if (granularity_aligned_lba == sector_mapped)
> >>            req_sects = min_t(sector_t, nr_sects,
> >>                              bio_aligned_discard_max_sectors(q));
> >>   because bio_aligned_discard_max_sectors(q) returns 0, req_sects is
> >>   calculated as 0.
> >> - Now a discard bio is mistakenly initialized as a 0 byte bio by,
> >>    bio->bi_iter.bi_size = req_sects << 9;
> >>   and sent to loop device driver.
> >> - This discard request is handled by loop device driver by following
> >>   code path,
> >>     loop_handle_cmd => do_req_filebacked => lo_fallocate =>
> >>     file->f_op->fallocate => blkdev_fallocate => blkdev_issue_zeroout =>
> >>     __blkdev_issue_write_zeroes
> >> - Inside __blkdev_issue_write_zeroes(), a 0 byte length discard bio is
> >>   composed and sent to the backing device of the loop device.
> >> - In the I/O completion code path, in my case it is,
> >>     blk_done_softirq => nrq->q->mq_ops->complete => nvme_pci_complete_rq
> >>     => nvme_complete_rq => blk_mq_end_request
> >>   inside blk_mq_end_request(), blk_update_request() is called and due to
> >>   req->bio is NULL in previous step, blk_update_request() returns false
> >>   then the BUG() panic in blk_mq_end_request() is triggered.
> >>
> >> Although the above panic can be fixed in loop device driver, the generic
> >> __blkdev_issue_discard() should also be fixed to tolerate the incorrect
> >> 0 value from queue->limits.discard_granularity, in case some other buggy
> >> driver makes such mistake again.
> >>
> >> This patch checks whether q->limits.discard_granularity is 0 in
> >> __blkdev_issue_discard() and bio_aligned_discard_max_sectors(). If it is
> >> 0 from some buggy driver queue, prints a warning oops information and
> >> set queue_logical_block_size(q) to a local variable discard_granularity.
> >> This local variable is used in round_up() and round_down() calculation,
> >> now req_sects won't be 0  and no empty discard request is generated.
> >>
> >> Fixes: 9b15d109a6b2 ("block: improve discard bio alignment in 
> >> __blkdev_issue_discard()")
> >> Fixes: c52abf563049 ("loop: Better discard support for block devices")
> >> Reported-by: Ming Lei <ming....@redhat.com>
> >> Signed-off-by: Coly Li <col...@suse.de>
> >> Cc: Hannes Reinecke <h...@suse.com>
> >> Cc: Ming Lei <ming....@redhat.com>
> >> Cc: Xiao Ni <x...@redhat.com>
> >> Cc: Bart Van Assche <bvanass...@acm.org>
> >> Cc: Christoph Hellwig <h...@lst.de>
> >> Cc: Enzo Matsumiya <ematsum...@suse.com>
> >> Cc: Jens Axboe <ax...@kernel.dk>
> >> Cc: Evan Green <evgr...@chromium.org>
> >> ---
> >>  block/blk-lib.c | 8 +++++++-
> >>  block/blk.h     | 9 +++++++--
> >>  2 files changed, 14 insertions(+), 3 deletions(-)
> >>
> >> diff --git a/block/blk-lib.c b/block/blk-lib.c
> >> index 019e09bb9c0e..3017e4cba923 100644
> >> --- a/block/blk-lib.c
> >> +++ b/block/blk-lib.c
> >> @@ -30,6 +30,7 @@ int __blkdev_issue_discard(struct block_device *bdev, 
> >> sector_t sector,
> >>    struct bio *bio = *biop;
> >>    unsigned int op;
> >>    sector_t bs_mask, part_offset = 0;
> >> +  sector_t discard_granularity;
> >>  
> >>    if (!q)
> >>            return -ENXIO;
> >> @@ -54,6 +55,11 @@ int __blkdev_issue_discard(struct block_device *bdev, 
> >> sector_t sector,
> >>    if (!nr_sects)
> >>            return -EINVAL;
> >>  
> >> +  discard_granularity = q->limits.discard_granularity;
> >> +  /* In case some buggy driver does not set limits.discard_granularity */
> >> +  if (WARN_ON_ONCE(discard_granularity == 0))
> >> +          discard_granularity = queue_logical_block_size(q);
> > 
> > This code path is supposed to not run in case of zero 
> > q->limits.discard_granularity,
> > and looks it is fine to just warn and return -EINVAL in this case,
> > see Documentation/ABI/testing/sysfs-block:
> > 
> >     What:       /sys/block/<disk>/queue/discard_granularity
> >     Date:       May 2011
> >     Contact:    Martin K. Petersen <martin.peter...@oracle.com>
> >     Description:
> >             Devices that support discard functionality may
> >             internally allocate space using units that are bigger
> >             than the logical block size. The discard_granularity
> >             parameter indicates the size of the internal allocation
> >             unit in bytes if reported by the device. Otherwise the
> >             discard_granularity will be set to match the device's
> >             physical block size. A discard_granularity of 0 means
> >             that the device does not support discard functionality.
> > 
> > What we need to fix is loop driver, if it claims to support discard,
> > q->limits.discard_granularity has to be one valid value.
> 
> Yes your suggestion is much simpler, let me do it :-)

That is exactly what the following patch does:

https://lore.kernel.org/linux-block/6f642b8a-648e-8b59-067f-6c9f4cc32...@suse.de/T/#m82a878277ae7ed6b7a595820112fd13beaa24c99


Thanks,
Ming

Reply via email to