Hi,

On Sat, Jan 03, 2026 at 12:33:29AM +0100, Klara Modin wrote:
> On 2026-01-02 08:59:58 +0200, Mike Rapoport wrote:
> > From: "Mike Rapoport (Microsoft)" <[email protected]>
> > 
> > To initialize node, zone and memory map data structures every architecture
> > calls free_area_init() during setup_arch() and passes it an array of zone
> > limits.
> > 
> > Beside code duplication it creates "interesting" ordering cases between
> > allocation and initialization of hugetlb and the memory map. Some
> > architectures allocate hugetlb pages very early in setup_arch() in certain
> > cases, some only create hugetlb CMA areas in setup_arch() and sometimes
> > hugetlb allocations happen mm_core_init().
> > 
> > With arch_zone_limits_init() helper available now on all architectures it
> > is no longer necessary to call free_area_init() from architecture setup
> > code. Rather core MM initialization can call arch_zone_limits_init() in a
> > single place.
> > 
> > This allows to unify ordering of hugetlb vs memory map allocation and
> > initialization.
> > 
> > Remove the call to free_area_init() from architecture specific code and
> > place it in a new mm_core_init_early() function that is called immediately
> > after setup_arch().
> > 
> > After this refactoring it is possible to consolidate hugetlb allocations
> > and eliminate differences in ordering of hugetlb and memory map
> > initialization among different architectures.
> > 
> > As the first step of this consolidation move hugetlb_bootmem_alloc() to
> > mm_core_early_init().
> > 
> > Signed-off-by: Mike Rapoport (Microsoft) <[email protected]>
> 
> This breaks boot on my Raspberry Pi 1. The reason seems to be the use of
> page_folio() when initializing the dynamically allocated zero page in
> arm, which doesn't work when free_area_init() hasn't been called yet.

I believe the reason is rather the use of virt_to_phys() that now happens
before the memory map is ready.

> The following oopses are generated:
> 
>  8<--- cut here ---
>  Unable to handle kernel paging request at virtual address 003dfb44 when read
>  [003dfb44] *pgd=00000000
>  Internal error: Oops: 5 [#1] ARM
>  CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 
> 6.19.0-rc3-03898-g7975b0084358 #451 NONE
>  Hardware name: BCM2835
>  PC is at paging_init (include/linux/page-flags.h:284 (discriminator 2) 
> arch/arm/mm/mmu.c:1790 (discriminator 2))
>  LR is at paging_init (arch/arm/mm/mmu.c:1789 (discriminator 1))

...

>  8<--- cut here ---
> 
> and the second one repeats for some time afterwards.
> 
> I experimented a little by allocating the zero page statically as many
> other arches do which fixes the issue as it does not need to be
> initialized at this point anymore, though I have no idea if that's
> appropriate.

Do you mean putting the zero in the BSS like, e.g. arm64? I don't see a
reason why this shouldn't work.

I also have a patch with some minor changes that still keeps
empty_zero_page allocated, but avoids virt_to_page() and folio_page()
dance. Can you please test it in your setup?

>From 8a213c13211106d592fbe96b68ee29879ed739f8 Mon Sep 17 00:00:00 2001
From: "Mike Rapoport (Microsoft)" <[email protected]>
Date: Sat, 3 Jan 2026 20:40:09 +0200
Subject: [PATCH] arm: make initialization of zero page independent of the
 memory map

Unlike most architectures, arm keeps a struct page pointer to the
empty_zero_page and to initialize it requires conversion of a virtual
address to page which makes it necessary to have memory map initialized
before creating the empty_zero_page.

Make empty_zero_page a void * to decouple it's initialization from the
initialization of the memory map.

Signed-off-by: Mike Rapoport (Microsoft) <[email protected]>
---
 arch/arm/include/asm/pgtable.h |  4 ++--
 arch/arm/mm/mmu.c              | 10 +++-------
 arch/arm/mm/nommu.c            | 10 +++-------
 3 files changed, 8 insertions(+), 16 deletions(-)

diff --git a/arch/arm/include/asm/pgtable.h b/arch/arm/include/asm/pgtable.h
index 86378eec7757..08bbd2aed6c9 100644
--- a/arch/arm/include/asm/pgtable.h
+++ b/arch/arm/include/asm/pgtable.h
@@ -15,8 +15,8 @@
  * ZERO_PAGE is a global shared page that is always zero: used
  * for zero-mapped memory areas etc..
  */
-extern struct page *empty_zero_page;
-#define ZERO_PAGE(vaddr)       (empty_zero_page)
+extern void *empty_zero_page;
+#define ZERO_PAGE(vaddr)       (virt_to_page(empty_zero_page))
 #endif
 
 #include <asm-generic/pgtable-nopud.h>
diff --git a/arch/arm/mm/mmu.c b/arch/arm/mm/mmu.c
index 8bac96e205ac..867258f1ae09 100644
--- a/arch/arm/mm/mmu.c
+++ b/arch/arm/mm/mmu.c
@@ -45,7 +45,7 @@ extern unsigned long __atags_pointer;
  * empty_zero_page is a special page that is used for
  * zero-initialized data and COW.
  */
-struct page *empty_zero_page;
+void *empty_zero_page;
 EXPORT_SYMBOL(empty_zero_page);
 
 /*
@@ -1754,8 +1754,6 @@ static void __init early_fixmap_shutdown(void)
  */
 void __init paging_init(const struct machine_desc *mdesc)
 {
-       void *zero_page;
-
 #ifdef CONFIG_XIP_KERNEL
        /* Store the kernel RW RAM region start/end in these variables */
        kernel_sec_start = CONFIG_PHYS_OFFSET & SECTION_MASK;
@@ -1782,12 +1780,10 @@ void __init paging_init(const struct machine_desc 
*mdesc)
        top_pmd = pmd_off_k(0xffff0000);
 
        /* allocate the zero page. */
-       zero_page = early_alloc(PAGE_SIZE);
+       empty_zero_page = early_alloc(PAGE_SIZE);
+       __cpuc_flush_dcache_area(empty_zero_page, PAGE_SIZE);
 
        bootmem_init();
-
-       empty_zero_page = virt_to_page(zero_page);
-       __flush_dcache_folio(NULL, page_folio(empty_zero_page));
 }
 
 void __init early_mm_init(const struct machine_desc *mdesc)
diff --git a/arch/arm/mm/nommu.c b/arch/arm/mm/nommu.c
index d638cc87807e..f80ff5a69fbb 100644
--- a/arch/arm/mm/nommu.c
+++ b/arch/arm/mm/nommu.c
@@ -31,7 +31,7 @@ unsigned long vectors_base;
  * empty_zero_page is a special page that is used for
  * zero-initialized data and COW.
  */
-struct page *empty_zero_page;
+void *empty_zero_page;
 EXPORT_SYMBOL(empty_zero_page);
 
 #ifdef CONFIG_ARM_MPU
@@ -156,18 +156,14 @@ void __init adjust_lowmem_bounds(void)
  */
 void __init paging_init(const struct machine_desc *mdesc)
 {
-       void *zero_page;
-
        early_trap_init((void *)vectors_base);
        mpu_setup();
 
        /* allocate the zero page. */
-       zero_page = (void *)memblock_alloc_or_panic(PAGE_SIZE, PAGE_SIZE);
+       empty_zero_page = memblock_alloc_or_panic(PAGE_SIZE, PAGE_SIZE);
+       __cpuc_flush_dcache_area(empty_zero_page, PAGE_SIZE);
 
        bootmem_init();
-
-       empty_zero_page = virt_to_page(zero_page);
-       flush_dcache_page(empty_zero_page);
 }
 
 /*
-- 
2.51.0

 
> Regards,
> Klara Modin
> 

-- 
Sincerely yours,
Mike.

Reply via email to