Angus Leeming wrote:

> 
> Could you export the lyx file to latex and post this latex file together
> with the associated 0lyxpreview.tex?
> 

Here it is.
Thanks.
\batchmode
%% LyX 1.3 created this file.  For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\makeatletter
[EMAIL PROTECTED]/home/yosef/school/madar//}}
\makeatother
\documentclass[twoside,english,hebrew]{article}
\usepackage[latin1,cp1255]{inputenc}
\usepackage{a4wide}
\usepackage{fancyhdr}
\pagestyle{fancy}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}

\makeatletter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
%% Bold symbol macro for standard LaTeX users
\newcommand{\boldsymbol}[1]{\mbox{\boldmath $#1$}}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
\usepackage{fancyhdr}
\usepackage[ddmmyy]{datetime}
\date{}

\makeatletter
[EMAIL PROTECTED]@fancyhead
[EMAIL PROTECTED]@fancyhead#1#2#3#4#5}}
[EMAIL PROTECTED]@fancyfoot
[EMAIL PROTECTED]@fancyfoot#1#2#3#4#5}}
\makeatother 

\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0.4pt}

\fancyfoot{}
\fancyfoot[C]{\thepage}
\fancyfoot[L]{\L{\formatdate{\day}{\month}{\year}}}
\fancyfoot[R]{\inputencoding{cp1255}יוסף מלר %
\L{043467430}}

\setlength{\headsep}{0mm}
\setlength{\headheight}{0mm}
\setlength{\topmargin}{0mm}
\setlength{\voffset}{0mm}


\usepackage{babel}
\makeatother

\def\lyxlock{}


\newcommand{\vieta}[3]{\left\{  \protect\begin{array}{l}

#1_{1}+#1_{2}=#2\protect\\
#1_{1}#1_{2}=#3\protect\end{array}\right.}

\usepackage[active,delayed,dvips,tightpage,showlabels,lyx]{preview}

\AtBeginDocument{\AtBeginDvi{%
\special{!userdict begin/bop-hook{//bop-hook exec
<000000faf1e4>{255 div}forall setrgbcolor
clippath fill setrgbcolor}bind def end}}}

\begin{document}
\begin{preview}
$r^{2}-2r-3=0\rightarrow\left\{ \begin{array}{l}
r_{1}+r_{2}=2\\
r_{1}r_{2}=-3\end{array}\right.\rightarrow r_{1}=-1,\, r_{2}=3\rightarrow 
y_{1}=e^{-x},\, y_{2}=e^{3x}$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}e^{3x}+y_{p}$
\end{preview}

\begin{preview}
$y"_{p}=4Ae^{2x}\leftarrow y'_{p}=2Ae^{2x}\leftarrow y_{p}=Ae^{2x}$
\end{preview}

\begin{preview}
$A=-1\leftarrow y"_{p}-2y'_{p}-3y_{p}=4Ae^{2x}-4Ae^{2x}-3Ae^{2x}=-3Ae^{2x}=3e^{2x}$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}e^{3x}-e^{2x}$
\end{preview}

\begin{preview}
$y_{p}=\left(Ax+B\right)e^{2x}$
\end{preview}

\begin{preview}
$y'_{p}=2e^{2x}\left(Ax+B\right)+Ae^{2x}$
\end{preview}

\begin{preview}
$y"_{p}=4e^{2x}\left(Ax+B\right)+4Ae^{2x}$
\end{preview}

\begin{preview}
\begin{eqnarray*}
y"_{p}-2y'_{p}-3y_{p} & = & 
4e^{2x}\left(Ax+B\right)+4Ae^{2x}-4e^{2x}\left(Ax+B\right)-2Ae^{2x}-3\left(Ax+B\right)e^{2x}=\\
 & = & -3Axe^{2x}+\left(2A-3B\right)e^{2x}=-3xe^{2x}\end{eqnarray*}

\end{preview}

\begin{preview}
$A=1\leftarrow-3A=-3$
\end{preview}

\begin{preview}
$B=\frac{2}{3}\leftarrow2-3B=0\leftarrow2A-3B=0$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}e^{3x}+\left(x+\frac{2}{3}\right)e^{2x}$
\end{preview}

\begin{preview}
$y_{1}=1,\, y_{2}=e^{-x}\leftarrow r_{1}=0,\, r_{2}=-1\leftarrow r^{2}+r=0$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}+y_{p}$
\end{preview}

\begin{preview}
$y_{p}=Ax+B\sin\left(4x\right)+C\cos\left(4x\right)$
\end{preview}

\begin{preview}
$y'_{p}=A+4B\cos\left(4x\right)-4C\sin\left(4x\right);\, 
y"_{p}=-16B\sin\left(4x\right)-16C\cos\left(4x\right)$
\end{preview}

\begin{preview}
\begin{eqnarray*}
y"_{p}+y'_{p} & = & 
-16B\sin\left(4x\right)-16C\cos\left(4x\right)+A+4B\cos\left(4x\right)-4C\sin\left(4x\right)=\\
 & = & 
A+\sin\left(4x\right)\left(-16B-4C\right)+\cos\left(4x\right)\left(-16C+4B\right)=3+4\sin\left(4x\right)\end{eqnarray*}

\end{preview}

\begin{preview}
$\left[\begin{array}{lrrl}
1 & 0 & 0 & 3\\
0 & -16 & -4 & 4\\
0 & 4 & -16 & 0\end{array}\right]\rightarrow\left[\begin{array}{lrrl}
1 & 0 & 0 & 3\\
0 & -16 & -4 & 4\\
0 & 4 & -16 & 0\end{array}\right]\rightarrow A=3;\, B=-\frac{4}{17};\, C=-\frac{1}{17}$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}+3-\frac{16}{17}\cos\left(4x\right)+\frac{4}{17}\sin\left(4x\right)=C_{1}e^{-x}+C_{2}-\frac{16}{17}\cos\left(4x\right)+\frac{4}{17}\sin\left(4x\right)$
\end{preview}

\begin{preview}
$r=-1\leftarrow r^{2}+2r+1=\left(r+1\right)^{2}=0$
\end{preview}

\begin{preview}
$y_{1}=e^{-x};\, y_{2}=xe^{-x}$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}xe^{-x}+y_{p}$
\end{preview}

\begin{preview}
$y_{p}=Ax^{2}e^{-x}$
\end{preview}

\begin{preview}
$Ax^{2}$
\end{preview}

\begin{preview}
$y'_{p}=2Axe^{-x}-Ax^{2}e^{-x}$
\end{preview}

\begin{preview}
$y"_{p}=-2Axe^{-x}+2Ae^{-x}-2Axe^{-x}+Ax^{2}e^{-x}=Ax^{2}e^{-x}-4Axe^{-x}+2Ae^{-x}$
\end{preview}

\begin{preview}
$y"_{p}+2y'_{p}+y=Ax^{2}e^{-x}-4Axe^{-x}+2Ae^{-x}+4Axe^{-x}-2Ax^{2}e^{-x}+Ax^{2}e^{-x}=2Ae^{-x}=2e^{-x}\rightarrow
 A=1$
\end{preview}

\begin{preview}
$y=C_{1}e^{-x}+C_{2}xe^{-x}+2e^{-x}$
\end{preview}

\begin{preview}
$r^{2}+r-2=0\rightarrow\vieta{r}{-1}{-2}\rightarrow r_{1}=-2,\, r_{2}=1$
\end{preview}

\begin{preview}
$y_{1}=e^{x},\, y_{2}=e^{-2x}\rightarrow y'_{1}=e^{x},\, y'_{2}=-2e^{-2x}$
\end{preview}

\begin{preview}
$y=C_{1}e^{x}+C_{2}e^{-2x}+y_{p}$
\end{preview}

\begin{preview}
$y_{p}=Ax+B$
\end{preview}

\begin{preview}
$y'_{p}=A,\, y"_{p}=0$
\end{preview}

\begin{preview}
$y"_{p}+y'_{p}+y=A+Ax+B=2x\rightarrow A=2,\, B=-2$
\end{preview}

\begin{preview}
$y=C_{1}e^{x}+C_{2}e^{-2x}+2x-2$
\end{preview}

\begin{preview}
$y_{1}\left(0\right)=e^{0}=1;\, y_{2}\left(0\right)=e^{0}=1;\, y_{p}\left(0\right)=-2$
\end{preview}

\begin{preview}
$y'_{1}\left(0\right)=e^{0}=1;\, y'_{2}\left(0\right)=-2;\, y'_{p}\left(0\right)=2$
\end{preview}

\begin{preview}
$\left\{ \begin{array}{l}
C_{1}y_{1}\left(0\right)+C_{2}y_{2}\left(0\right)+y_{p}\left(0\right)=0\\
C_{1}y'_{1}\left(0\right)+C_{2}y'_{2}\left(0\right)+y'_{p}\left(0\right)=1\end{array}\right.\rightarrow\left\{
 \begin{array}{l}
C_{1}+C_{2}=2\\
C_{1}-2C_{2}=-1\end{array}\right.\rightarrow\left(C_{1},C_{2}\right)=\left(1,1\right)$
\end{preview}

\begin{preview}
$y=e^{x}+e^{-2x}+2x-2$
\end{preview}

\begin{preview}
$r^{2}+4=0\rightarrow\vieta{r}{0}{4}\rightarrow r_{1}=2,\, r_{2}=-2$
\end{preview}

\begin{preview}
$y_{1}=e^{2x},\, y_{2}=e^{-2x}\rightarrow y'_{1}=2e^{2x},\, y'_{2}=-2e^{-2x}$
\end{preview}

\begin{preview}
$y=C_{1}e^{2x}+C_{2}e^{-2x}+y_{p}$
\end{preview}

\begin{preview}
$x^{2}$
\end{preview}

\begin{preview}
$y_{p1}=Ax^{2}+Bx+C$
\end{preview}

\begin{preview}
$y'_{p1}=2Ax+B;\, y"_{p1}=2A$
\end{preview}

\begin{preview}
$y"_{p1}+4y_{p1}=2A+4Ax^{2}+4Bx+4C$
\end{preview}

\begin{preview}
$4A=1\rightarrow A=\frac{1}{4};\,2A+4B+4C=0$
\end{preview}


\end{document}

Attachment: madar_ex3.lyx
Description: application/lyx

Reply via email to