Hi Friends, I have to sort huge amount of data in minimum possible time probably using partitioning. The key is composed of 3 fields(partition, text and number). This is how partition is defined:
- Partition "1" for range 1-10 - Partition "2" for range 11-20 - Partition "3" for range 21-30 *I/P file format*: partition[tab]text[tab]range-start[tab]range-end [cloudera@localhost kMer2]$ cat input1 - 1 chr1 1 10 - 1 chr1 2 8 - 2 chr1 11 18 [cloudera@localhost kMer2]$ cat input2 - 1 chr1 3 7 - 2 chr1 12 19 [cloudera@localhost kMer2]$ cat input3 - 3 chr1 22 30 [cloudera@localhost kMer2]$ cat input4 - 3 chr1 22 30 - 1 chr1 9 10 - 2 chr1 15 16 Then I ran following command: hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-0.20.2-cdh3u2.jar \ -D stream.map.output.field.separator='\t' \ -D stream.num.map.output.key.fields=3 \ -D map.output.key.field.separator='\t' \ -D mapred.text.key.partitioner.options=-k1 \ -D mapred.reduce.tasks=3 \ -input /usr/pkansal/kMer2/ip \ -output /usr/pkansal/kMer2/op \ -mapper /home/cloudera/kMer2/kMer2Map.py \ -file /home/cloudera/kMer2/kMer2Map.py \ -reducer /home/cloudera/kMer2/kMer2Red.py \ -file /home/cloudera/kMer2/kMer2Red.py Both mapper and reducer scripts just contain one line of code: for line in sys.stdin: line = line.strip() print "%s" % (line) Following is the o/p: [cloudera@localhost kMer2]$ hadoop dfs -cat /usr/pkansal/kMer2/op/part-00000 - 2 chr1 12 19 - 2 chr1 15 16 - 3 chr1 22 30 - 3 chr1 22 30 [cloudera@localhost kMer2]$ hadoop dfs -cat /usr/pkansal/kMer2/op/part-00001 - 1 chr1 2 8 - 1 chr1 3 7 - 1 chr1 9 10 - 2 chr1 11 18 [cloudera@localhost kMer2]$ hadoop dfs -cat /usr/pkansal/kMer2/op/part-00002 - 1 chr1 1 10 - 3 chr1 22 29 This is not the o/p which I expected. I expected all records with: - partition 1 in one single file eg part-m-00000 - partition 2 in one single file eg part-m-00001 - partition 3 in one single file eg part-m-00002 Can you please suggest if I am doing it in a right way? -- Regards, Piyush Kansal