Dear Thierry,

I’ll have a look on the prime number theorem, because I think it also implies 
on primegaps and how they are distributed,

And those findings on my result were somehow diffirent. For example 10^1 or 
10^x.

Mine are distributed somehow diffirent and here’s that results.

In the second line you see how the primenumbers in between are growing. The 
gaps are also growing with the formula. What I think is sort of exponential.

Maybe I can’t read it to well to see some resemblance. Those prime ”pakkeges” 
are growing nicely,


And I’ll try to create a formula in a mathematical way,

And to find out if there’s some resemblance and so if there maybe is a 
diffirence..

They seem to ditribute and grow evenly.


This is made in C++ by me

Results.

1:   1   0 <=> 1           1         per gap=>             100 %       total=>  
    50 %
2:   2   1 <=> 4.5           1         per gap=>             57.1429 %       
total=>      85.7143 %
3:   3   4.5 <=> 12           1         per gap=>             40 %       
total=>      52.8571 %
4:   4   12 <=> 25           1         per gap=>             30.7692 %       
total=>      38.1538 %
5:   5   25 <=> 45           1         per gap=>             25 %       total=> 
     29.8077 %
6:   7   45 <=> 73.5           1.16667         per gap=>             24.5614 %  
     total=>      24.9373 %
7:   9   73.5 <=> 112           1.28571         per gap=>             23.3766 % 
      total=>      24.4133 %
8:   8   112 <=> 162           1         per gap=>             16 %       
total=>      22.557 %
9:   11   162 <=> 225           1.22222         per gap=>             17.4603 % 
      total=>      16.146 %
10:   14   225 <=> 302.5           1.4         per gap=>             18.0645 %  
     total=>      17.5152 %
11:   15   302.5 <=> 396           1.36364         per gap=>             
16.0428 %       total=>      17.896 %
12:   19   396 <=> 507           1.58333         per gap=>             17.1171 
%       total=>      16.1254 %
13:   19   507 <=> 637           1.46154         per gap=>             14.6154 
%       total=>      16.9384 %
14:   23   637 <=> 787.5           1.64286         per gap=>             
15.2824 %       total=>      14.6599 %
15:   25   787.5 <=> 960           1.66667         per gap=>             
14.4928 %       total=>      15.233 %
16:   29   960 <=> 1156           1.8125         per gap=>             14.7959 
%       total=>      14.5106 %
17:   29   1156 <=> 1377           1.70588         per gap=>             
13.1222 %       total=>      14.7029 %
18:   37   1377 <=> 1624.5           2.05556         per gap=>             
14.9495 %       total=>      13.2183 %
19:   33   1624.5 <=> 1900           1.73684         per gap=>             
11.9782 %       total=>      14.8009 %
20:   38   1900 <=> 2205           1.9         per gap=>             12.459 %   
    total=>      12.0011 %
21:   43   2205 <=> 2541           2.04762         per gap=>             
12.7976 %       total=>      12.4744 %
22:   50   2541 <=> 2909.5           2.27273         per gap=>             
13.5685 %       total=>      12.8311 %
23:   45   2909.5 <=> 3312           1.95652         per gap=>             
11.1801 %       total=>      13.469 %
24:   57   3312 <=> 3750           2.375         per gap=>             13.0137 
%       total=>      11.2535 %
25:   56   3750 <=> 4225           2.24         per gap=>             11.7895 % 
      total=>      12.9666 %
26:   61   4225 <=> 4738.5           2.34615         per gap=>             
11.8793 %       total=>      11.7928 %
27:   62   4738.5 <=> 5292           2.2963         per gap=>             
11.2014 %       total=>      11.8551 %
28:   74   5292 <=> 5887           2.64286         per gap=>             12.437 
%       total=>      11.244 %
29:   68   5887 <=> 6525           2.34483         per gap=>             
10.6583 %       total=>      12.3777 %
30:   77   6525 <=> 7207.5           2.56667         per gap=>             
11.2821 %       total=>      10.6784 %
31:   83   7207.5 <=> 7936           2.67742         per gap=>             
11.3933 %       total=>      11.2855 %
32:   83   7936 <=> 8712           2.59375         per gap=>             
10.6959 %       total=>      11.3721 %
33:   95   8712 <=> 9537           2.87879         per gap=>             
11.5152 %       total=>      10.72 %
34:   94   9537 <=> 10412.5           2.76471         per gap=>             
10.7367 %       total=>      11.4929 %
35:   96   10412.5 <=> 11340           2.74286         per gap=>             
10.3504 %       total=>      10.726 %
36:   101   11340 <=> 12321           2.80556         per gap=>             
10.2956 %       total=>      10.3489 %
37:   114   12321 <=> 13357           3.08108         per gap=>             
11.0039 %       total=>      10.3143 %
38:   110   13357 <=> 14449.5           2.89474         per gap=>             
10.0686 %       total=>      10.9799 %
39:   124   14449.5 <=> 15600           3.17949         per gap=>             
10.7779 %       total=>      10.0864 %
40:   121   15600 <=> 16810           3.025         per gap=>             10 %  
     total=>      10.7589 %
41:   133   16810 <=> 18081           3.2439         per gap=>             
10.4642 %       total=>      10.0111 %
42:   125   18081 <=> 19414.5           2.97619         per gap=>             
9.37383 %       total=>      10.4388 %
43:   147   19414.5 <=> 20812           3.4186         per gap=>             
10.5188 %       total=>      9.39985 %
44:   150   20812 <=> 22275           3.40909         per gap=>             
10.2529 %       total=>      10.5129 %
45:   153   22275 <=> 23805           3.4         per gap=>             10 %    
   total=>      10.2474 %
46:   153   23805 <=> 25403.5           3.32609         per gap=>             
9.57147 %       total=>      9.99088 %
47:   168   25403.5 <=> 27072           3.57447         per gap=>             
10.0689 %       total=>      9.58184 %
48:   169   27072 <=> 28812           3.52083         per gap=>             
9.71264 %       total=>      10.0617 %
49:   165   28812 <=> 30625           3.36735         per gap=>             
9.10094 %       total=>      9.70041 %
50:   187   30625 <=> 32512.5           3.74         per gap=>             
9.90728 %       total=>      9.11675 %
51:   193   32512.5 <=> 34476           3.78431         per gap=>             
9.82939 %       total=>      9.90579 %
52:   188   34476 <=> 36517           3.61538         per gap=>             
9.21117 %       total=>      9.81772 %
53:   199   36517 <=> 38637           3.75472         per gap=>             
9.38679 %       total=>      9.21442 %
54:   206   38637 <=> 40837.5           3.81481         per gap=>             
9.36151 %       total=>      9.38633 %
55:   230   40837.5 <=> 43120           4.18182         per gap=>             
10.0767 %       total=>      9.37428 %
56:   210   43120 <=> 45486           3.75         per gap=>             
8.87574 %       total=>      10.0556 %
57:   224   45486 <=> 47937           3.92982         per gap=>             
9.13913 %       total=>      8.88028 %
58:   239   47937 <=> 50474.5           4.12069         per gap=>             
9.41872 %       total=>      9.14387 %
59:   239   50474.5 <=> 53100           4.05085         per gap=>             
9.10303 %       total=>      9.41346 %
60:   246   53100 <=> 55815           4.1         per gap=>             9.06077 
%       total=>      9.10234 %
61:   269   55815 <=> 58621           4.40984         per gap=>             
9.5866 %       total=>      9.06925 %
62:   257   58621 <=> 61519.5           4.14516         per gap=>             
8.86666 %       total=>      9.57517 %
63:   265   61519.5 <=> 64512           4.20635         per gap=>             
8.85547 %       total=>      8.86648 %
64:   282   64512 <=> 67600           4.40625         per gap=>             
9.13212 %       total=>      8.85973 %
65:   274   67600 <=> 70785           4.21538         per gap=>             
8.60283 %       total=>      9.1241 %
66:   297   70785 <=> 74068.5           4.5         per gap=>             
9.04523 %       total=>      8.60943 %
67:   302   74068.5 <=> 77452           4.50746         per gap=>             
8.92567 %       total=>      9.04347 %
68:   314   77452 <=> 80937           4.61765         per gap=>             
9.01004 %       total=>      8.92689 %
69:   319   80937 <=> 84525           4.62319         per gap=>             
8.89075 %       total=>      9.00834 %
70:   315   84525 <=> 88217.5           4.5         per gap=>             
8.53081 %       total=>      8.88568 %
71:   333   88217.5 <=> 92016           4.69014         per gap=>             
8.76662 %       total=>      8.53408 %
72:   355   92016 <=> 95922           4.93056         per gap=>             
9.08858 %       total=>      8.77103 %
73:   344   95922 <=> 99937           4.71233         per gap=>             
8.56787 %       total=>      9.08155 %
74:   352   99937 <=> 104062           4.75676         per gap=>             
8.5323 %       total=>      8.5674 %
75:   364   104062 <=> 108300           4.85333         per gap=>             
8.58997 %       total=>      8.53306 %
76:   371   108300 <=> 112651           4.88158         per gap=>             
8.52678 %       total=>      8.58915 %
77:   379   112651 <=> 117117           4.92208         per gap=>             
8.48634 %       total=>      8.52626 %
78:   400   117117 <=> 121700           5.12821         per gap=>             
8.72886 %       total=>      8.48941 %
79:   400   121700 <=> 126400           5.06329         per gap=>             
8.50973 %       total=>      8.72612 %
80:   406   126400 <=> 131220           5.075         per gap=>             
8.42324 %       total=>      8.50867 %
81:   417   131220 <=> 136161           5.14815         per gap=>             
8.43959 %       total=>      8.42344 %
82:   438   136161 <=> 141224           5.34146         per gap=>             
8.65014 %       total=>      8.44212 %
83:   429   141224 <=> 146412           5.16867         per gap=>             
8.26988 %       total=>      8.64562 %
84:   457   146412 <=> 151725           5.44048         per gap=>             
8.60154 %       total=>      8.27378 %
85:   447   151725 <=> 157165           5.25882         per gap=>             
8.21691 %       total=>      8.59707 %
86:   461   157165 <=> 162734           5.36047         per gap=>             
8.27871 %       total=>      8.21762 %
87:   458   162734 <=> 168432           5.26437         per gap=>             
8.0372 %       total=>      8.27597 %
88:   489   168432 <=> 174262           5.55682         per gap=>             
8.38765 %       total=>      8.04114 %
89:   501   174262 <=> 180225           5.62921         per gap=>             
8.40181 %       total=>      8.38781 %
90:   511   180225 <=> 186322           5.67778         per gap=>             
8.38048 %       total=>      8.40158 %
91:   505   186322 <=> 192556           5.54945         per gap=>             
8.10139 %       total=>      8.37745 %
92:   524   192556 <=> 198927           5.69565         per gap=>             
8.22477 %       total=>      8.10271 %
93:   522   198927 <=> 205437           5.6129         per gap=>             
8.01843 %       total=>      8.22257 %
94:   562   205437 <=> 212088           5.97872         per gap=>             
8.45049 %       total=>      8.02298 %
95:   536   212088 <=> 218880           5.64211         per gap=>             
7.89106 %       total=>      8.44466 %
96:   572   218880 <=> 225816           5.95833         per gap=>             
8.24683 %       total=>      7.89472 %
97:   579   225816 <=> 232897           5.96907         per gap=>             
8.17681 %       total=>      8.24611 %
98:   566   232897 <=> 240124           5.77551         per gap=>             
7.8312 %       total=>      8.17332 %
99:   597   240124 <=> 247500           6.0303         per gap=>             
8.09437 %       total=>      7.83383 %
100:   610   247500 <=> 255025           6.1         per gap=>             
8.10631 %       total=>      8.09448 %
101:   605   255025 <=> 262701           5.9901         per gap=>             
7.88171 %       total=>      8.10411 %
102:   640   262701 <=> 270530           6.27451         per gap=>             
8.17526 %       total=>      7.88456 %
103:   632   270530 <=> 278512           6.13592         per gap=>             
7.91732 %       total=>      8.17278 %
104:   649   278512 <=> 286650           6.24038         per gap=>             
7.97493 %       total=>      7.91787 %
105:   642   286650 <=> 294945           6.11429         per gap=>             
7.7396 %       total=>      7.97271 %
106:   663   294945 <=> 303398           6.25472         per gap=>             
7.84291 %       total=>      7.74057 %
107:   677   303398 <=> 312012           6.3271         per gap=>             
7.85976 %       total=>      7.84306 %
108:   723   312012 <=> 320787           6.69444         per gap=>             
8.23932 %       total=>      7.86324 %
109:   712   320787 <=> 329725           6.53211         per gap=>             
7.96599 %       total=>      8.23683 %
110:   720   329725 <=> 338828           6.54545         per gap=>             
7.90991 %       total=>      7.96548 %
111:   722   338828 <=> 348096           6.5045         per gap=>             
7.78983 %       total=>      7.90884 %
112:   734   348096 <=> 357532           6.55357         per gap=>             
7.77872 %       total=>      7.78973 %
113:   755   357532 <=> 367137           6.68142         per gap=>             
7.86049 %       total=>      7.77944 %
114:   747   367137 <=> 376912           6.55263         per gap=>             
7.64155 %       total=>      7.85859 %
115:   768   376912 <=> 386860           6.67826         per gap=>             
7.72053 %       total=>      7.64223 %
116:   790   386860 <=> 396981           6.81034         per gap=>             
7.80555 %       total=>      7.72126 %
117:   772   396981 <=> 407277           6.59829         per gap=>             
7.49806 %       total=>      7.80295 %
118:   818   407277 <=> 417750           6.9322         per gap=>             
7.81093 %       total=>      7.50069 %
119:   821   417750 <=> 428400           6.89916         per gap=>             
7.70856 %       total=>      7.81008 %
120:   848   428400 <=> 439230           7.06667         per gap=>             
7.8301 %       total=>      7.70956 %
121:   849   439230 <=> 450241           7.01653         per gap=>             
7.71047 %       total=>      7.82912 %
122:   840   450241 <=> 461434           6.88525         per gap=>             
7.50436 %       total=>      7.7088 %
123:   880   461434 <=> 472812           7.15447         per gap=>             
7.73456 %       total=>      7.50621 %
124:   898   472812 <=> 484375           7.24194         per gap=>             
7.76615 %       total=>      7.73482 %
125:   898   484375 <=> 496125           7.184         per gap=>             
7.64255 %       total=>      7.76517 %
126:   901   496125 <=> 508064           7.15079         per gap=>             
7.54701 %       total=>      7.6418 %
127:   928   508064 <=> 520192           7.30709         per gap=>             
7.6514 %       total=>      7.54783 %
128:   940   520192 <=> 532512           7.34375         per gap=>             
7.62987 %       total=>      7.65123 %
129:   937   532512 <=> 545025           7.26357         per gap=>             
7.48821 %       total=>      7.62878 %
130:   952   545025 <=> 557732           7.32308         per gap=>             
7.49164 %       total=>      7.48824 %
131:   971   557732 <=> 570636           7.41221         per gap=>             
7.52509 %       total=>      7.49189 %
132:   999   570636 <=> 583737           7.56818         per gap=>             
7.62537 %       total=>      7.52584 %
133:   1009   583737 <=> 597037           7.58647         per gap=>             
7.58647 %       total=>      7.62508 %

With friendly regards,

Dirk-Anton Broersen


Verzonden vanuit Mail<https://go.microsoft.com/fwlink/?LinkId=550986> voor 
Windows 10

Van: Thierry Arnoux<mailto:[email protected]>
Verzonden: dinsdag 24 maart 2020 15:21
Aan: [email protected]<mailto:[email protected]>
CC: Dirk-Anton Broersen<mailto:[email protected]>
Onderwerp: Re: Prime numbers in Triangular intervals

Hi Dirk-Anton,

This list is more for formalization of mathematics in Metamath; other mailing 
lists are probably more adequate, like alt.math.undergrad 
(http://mathforum.org/library/view/6791.html 
<http://mathforum.org/library/view/6791.html> ).

Anyway, if you are interested in how prime numbers are distributed, you should 
check the prime number theorem 
(https://en.wikipedia.org/wiki/Prime_number_theorem?wprov=sfti1).

Furthermore, here is what I would suggest:
You may be able to write your sequence in a closed form. You define it as 
A_n=(T_n)^2/n, where Tn is the nth triangular number. There is a closed form 
for the triangular numbers: Tn = n(n+1)/2, and if you inject it in A_n, you get 
A_n = n(n+1)^2/4.

Then, using the prime number theorem, you may be able to estimate how many 
primes are lower than or equal to A_n; how many are less than A_(n+1), and by 
difference, how many primes are between A_n and A_(n+1), and finally, you could 
check if this agrees with the limit you get experimentally by counting.
BR,
_
Thierry


Envoyé de mon iPhone

Van: Dirk-Anton Broersen<mailto:[email protected]>
Verzonden: dinsdag 24 maart 2020 13:08
Aan: [email protected]<mailto:[email protected]>; Dirk-Anton 
Broersen<mailto:[email protected]>
Onderwerp: Re: [Metamath] Formalizing IMO B2.1972

I'm also a beginner. And I received this email. I posted lately an email about 
a finding. I don 't know of it's unique or known or if it has resemblance.
It's also about triangelar numbers in a formula.
E
x = x + 1
(triangelar number) power 2 / x
triangelar number = triangelar number + triangelar number + 1

First results are and I also wrote a programm in c++ wich you can copy paste to 
cpp.sh to see the results.


1             1                           (1/1)             1 = 1 ^2
2             4.5                        (9/2)             9 = 3 ^2
3             12                         (36/3)         36 = 6 ^2
4              25                        (100/4)    100 = 10 ^2

1  <==>  4.5   <==>  12  <==>  25  <==> ..

within these gaps there is an amount of primenumbers that inscrease. Percentual 
it's also intersting.


I'll send next the first number of results of the programm. then it's also 
clear what number of primes are increasing.
Including the programm.

I don 't wanna frustrate others work. This might be seen as trolling. I just 
received this email, but I tought this might be something. I'm an 
undergraduated mathematician. And it has also to do with triangelar numbers.

With friendly regards,

Dirk-Anton Broersen


Outlook for Android<https://aka.ms/ghei36> downloaden
<77609AC6AB764EF7881D5C907B5BE9D9.png>
From: 'Stanislas Polu' via Metamath <[email protected]>
Sent: Monday, March 23, 2020 9:05:17 PM
To: [email protected] <[email protected]>
Subject: Re: [Metamath] Formalizing IMO B2.1972

Hi Marnix!

Thanks for sharing. The proof I formalized[0] is very closed but I agree is 
also a bit more complicated.

Out of curiosity, where did you find that proof which has a very "formal" 
presentation?

Best,

-stan

[0] http://us.metamath.org/mpeuni/imo72b2.html

On Mon, Mar 23, 2020 at 6:38 PM Marnix Klooster 
<[email protected]<mailto:[email protected]>> wrote:
Hi Stan,

If I were to formalize this in Metamath, I'd use the first proof, but in a more 
calculational format.

I've attached it, unfortunately as a picture.

Yes, this is a longer proof, but it seems somehow easier to me.

Hope this helps someone... :-)

<image.png>

Groetjes,
 <><
Marnix

Op do 27 feb. 2020 om 18:08 schreef 'Stanislas Polu' via Metamath 
<[email protected]<mailto:[email protected]>>:
Hi all,

I'm quite a beginner with Metamath (I have read a bunch of proofs, most of the 
metamath book, I have implemented my own verifier, but I haven't constructed 
any original proof yet) and I am looking to formalize the following proof:

IMO B2 1972: http://www.cs.ru.nl/~freek/demos/exercise/exercise.pdf
Alternative version: http://www.cs.ru.nl/~freek/demos/exercise/exercise2.pdf

(More broadly, I think this would be an interesting formalization to have in 
set.mm<http://set.mm> given this old but nonetheless interesting page: 
http://www.cs.ru.nl/~freek/demos/index.html)

I am reaching out to the community to get direction on how should I go about 
creating an efficient curriculum for myself in order to achieve that goal? Any 
other advice is obviously welcome!

Thank you!

-stan
--
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to 
[email protected]<mailto:[email protected]>.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/78223c8d-eddf-4f84-970d-6b0cbb20dab9%40googlegroups.com<https://groups.google.com/d/msgid/metamath/78223c8d-eddf-4f84-970d-6b0cbb20dab9%40googlegroups.com?utm_medium=email&utm_source=footer>.


--
Marnix Klooster
[email protected]<mailto:[email protected]>
--
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to 
[email protected]<mailto:[email protected]>.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/CAF7V2P-2gAJsLSmnz-AtneyXNOGmG5w%3Dcn2gYVXk94FUQ5XdPg%40mail.gmail.com<https://groups.google.com/d/msgid/metamath/CAF7V2P-2gAJsLSmnz-AtneyXNOGmG5w%3Dcn2gYVXk94FUQ5XdPg%40mail.gmail.com?utm_medium=email&utm_source=footer>.
--
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to 
[email protected]<mailto:[email protected]>.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/CACZd_0x56Ck-geksHLs0pRZwCLb_oaisqxyFpH4Ds5haXkrU9Q%40mail.gmail.com<https://groups.google.com/d/msgid/metamath/CACZd_0x56Ck-geksHLs0pRZwCLb_oaisqxyFpH4Ds5haXkrU9Q%40mail.gmail.com?utm_medium=email&utm_source=footer>.

--
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to 
[email protected]<mailto:[email protected]>.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/VI1P18901MB073396470DC49544F854329583F10%40VI1P18901MB0733.EURP189.PROD.OUTLOOK.COM<https://groups.google.com/d/msgid/metamath/VI1P18901MB073396470DC49544F854329583F10%40VI1P18901MB0733.EURP189.PROD.OUTLOOK.COM?utm_medium=email&utm_source=footer>.

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/VI1P18901MB073323E0126D0F82BF52BC6783F10%40VI1P18901MB0733.EURP189.PROD.OUTLOOK.COM.

Reply via email to