Boa noite, Tem uma coisa que não estou entendendo ... Enxergo , a expressão infinita de x elevada a x elevada a x (aplicando a propriedade de potência de potência) ... Como segue
x^(x^(n-1)) = 2 E x^(x^(n-1)) = 4 Com n tendendo a infinito. log x . log x = log (log 2))/(n-1) E log x . log x = log (log 4))/(n-1) Para n tendendo a infinito log x . log x =0 log^2 x = 0 Tem sentido?!!? Ou viajei? Outra coisa, essas equações soltas, sem algum tipo de restrição do valor de x fica um pouco sem rumo! Em qua, 1 de nov de 2023 18:37, Pacini Bores <pacinibo...@gmail.com> escreveu: > Oi Claudio, mas sabe, o que mais me incomoda é o fato de que em lnx = > lnL/L, se tomarmos a função g(L) = lnL/L , teremos 0< g(L) <= 1/e. Para > um único valor de "x" temos dois valores para L e, daí reforçando ( não sei > se estou bobeando em algo) a ideia de que na hipótese de existir lim > a(n+1) = lim a(n) = L ,e se tomarmos L=15 por exemplo , teremos um único > "x" no intervalo em que colocastes anteriormente. No Wolfram ou geogebra > fui fazendo f(x)= x^x^x... com o aumento na quantidade de"x" , o gráfico > me pareceu crescente a partir de um certo momento e tendo sempre uma reta > paralela ao eixo horizontal intersectando sempre o gráfico de "f(x)" . Ou > seja, aquele fato de que x^x^x...=4 e dizer que é impossível me causou > estranheza. Desculpem se estou cometendo erros conceituais, mas de qualquer > forma agradeço a atenção de todos. > > Pacini > > Em qua., 1 de nov. de 2023 às 16:17, Claudio Buffara < > claudio.buff...@gmail.com> escreveu: > >> Dando um Google em x^x^x, eu achei sites que NADA tinham a ver com este >> problema... >> Mas procurando um pouco mais, achei a afirmação (sem demonstração) de que >> a sequência converge para e^(-e) <= x <= e^(1/e). >> Explorando numericamente, me convenci de que isso está (provavelmente) >> correto. >> Ou seja, dado x naquele intervalo, existe L tal que x^L = L >> Em particular, L = 1/e ==> (e^(-e))^(1/e) = 1/e, e L = e ==> >> (e^(1/e))^e = e. >> Ou seja, minha conjectura é: a função f é crescente, tem domínio >> [e^(-e),e^(1/e)] e imagem [1/e,e]. >> >> []s, >> Claudio. >> >> On Wed, Nov 1, 2023 at 1:21 PM Claudio Buffara <claudio.buff...@gmail.com> >> wrote: >> >>> A ideia me parece ser definir a sequência (a(n)) por: >>> a(0) = x e a(n+1) = x^a(n) >>> e daí ver para que valores de x ela converge e, se convergir, para qual >>> limite. >>> >>> Se a(n) convergir para L, então x^L = L. >>> >>> Com L = 2 e L = 4, x^L = L implica que x = raiz(2). >>> >>> Explorando numericamente com uma planilha, eu noto que para x = raiz(2), >>> a sequência parece convergir para 2. >>> >>> O problema pode ser reformulado como sendo o de obter o maior intervalo >>> I de R para o qual é possível definir uma função f:I -> R tal que f(x) = >>> limite da sequência (a(n)) acima com valor inicial a(0) = x. >>> Daí, a análise informal acima sugere que raiz(2) pertence a I, >>> f(raiz(2)) = 2, e 4 não pertence a f(I). >>> >>> O que você está dizendo é que e^(1/e) = sup(I). Vamos ver... >>> >>> Se f(x) = L, então x^L = L ==> x = L^(1/L). >>> Agora, a função g(L) = L^(1/L) atinge seu valor máximo, igual a e^(1/e), >>> para L = e. >>> ( g(L) = e^log(L^(1/L)) = e^(log(L)/L) ==> g'(L) = g(L)*(1 - log(L))/L^2 >>> = 0 para L = e ) >>> Assim, se f(x) está definida, deve ser x <= e^(1/e). >>> Além disso, numericamente parece plausível que f(e^(1/e)) = e. >>> Se este for o caso, então, dado que e < 4, realmente 4 não pertence à >>> imagem de f. >>> >>> []s, >>> Claudio. >>> >>> >>> >>> On Wed, Nov 1, 2023 at 8:47 AM Pacini Bores <pacinibo...@gmail.com> >>> wrote: >>> >>>> Olá pessoal, gostaria da opinão de vocês com relação a essas duas >>>> equações, em que ambas , é claro garantindo a convergência, temos a mesma >>>> resposta para "x". O que muitos falam que a segunda igualdade não é >>>> possível. O que me intriga é que é possível mostrar( se não estiver >>>> errado), é que o "x" é que varia entre "0" e " e^(1/e)" para que a >>>> igualdade x^x^x..=k(k>0) e não o "k". Ou seja, há dois valores possíveis >>>> para "k", enquanto há apenas um valor para "x". >>>> >>>> A minha pergunta : Estou errando em algo ? >>>> >>>> Pacini >>>> >>>> -- >>>> Esta mensagem foi verificada pelo sistema de antivírus e >>>> acredita-se estar livre de perigo. >>> >>> >> -- >> Esta mensagem foi verificada pelo sistema de antivírus e >> acredita-se estar livre de perigo. > > > -- > Esta mensagem foi verificada pelo sistema de antivírus e > acredita-se estar livre de perigo. -- Esta mensagem foi verificada pelo sistema de antiv�rus e acredita-se estar livre de perigo.