Boa noite,

Tem uma coisa que não estou entendendo  ... Enxergo ,  a expressão infinita
de x elevada a x elevada a x (aplicando a propriedade de potência de
potência) ... Como segue

x^(x^(n-1)) = 2
E
x^(x^(n-1)) = 4
Com n tendendo a infinito.

log x . log x = log (log 2))/(n-1)
E
log x . log x = log (log 4))/(n-1)

Para n tendendo a infinito

log x . log x =0

log^2 x = 0

Tem sentido?!!? Ou viajei?


Outra coisa, essas equações soltas, sem algum tipo de restrição do valor de
x fica um pouco sem rumo!



Em qua, 1 de nov de 2023 18:37, Pacini Bores <pacinibo...@gmail.com>
escreveu:

> Oi Claudio, mas sabe,  o que mais me incomoda é o fato de que em  lnx =
> lnL/L, se tomarmos a função g(L) = lnL/L , teremos  0< g(L) <= 1/e. Para
> um único valor de "x" temos dois valores para L e, daí reforçando ( não sei
> se estou bobeando em algo) a ideia  de que na hipótese de existir lim
> a(n+1) = lim a(n) = L ,e se tomarmos  L=15 por exemplo , teremos um único
> "x" no intervalo em que colocastes anteriormente. No Wolfram ou geogebra
> fui fazendo f(x)= x^x^x... com o aumento na quantidade  de"x" , o gráfico
> me pareceu crescente a partir de um certo momento e tendo sempre uma reta
> paralela ao eixo horizontal intersectando sempre o gráfico de "f(x)" . Ou
> seja, aquele fato de que x^x^x...=4 e dizer que é impossível me causou
> estranheza. Desculpem se estou cometendo erros conceituais, mas de qualquer
> forma agradeço a  atenção de todos.
>
> Pacini
>
> Em qua., 1 de nov. de 2023 às 16:17, Claudio Buffara <
> claudio.buff...@gmail.com> escreveu:
>
>> Dando um Google em x^x^x, eu achei sites que NADA tinham a ver com este
>> problema...
>> Mas procurando um pouco mais, achei a afirmação (sem demonstração) de que
>> a sequência converge para e^(-e) <= x <= e^(1/e).
>> Explorando numericamente, me convenci de que isso está (provavelmente)
>> correto.
>> Ou seja, dado x naquele intervalo, existe L tal que x^L = L
>> Em particular, L = 1/e ==> (e^(-e))^(1/e) = 1/e,  e  L = e ==>
>> (e^(1/e))^e = e.
>> Ou seja, minha conjectura é: a função f é crescente, tem domínio
>> [e^(-e),e^(1/e)] e imagem [1/e,e].
>>
>> []s,
>> Claudio.
>>
>> On Wed, Nov 1, 2023 at 1:21 PM Claudio Buffara <claudio.buff...@gmail.com>
>> wrote:
>>
>>> A ideia me parece ser definir a sequência (a(n)) por:
>>> a(0) = x   e   a(n+1) = x^a(n)
>>> e daí ver para que valores de x ela converge e, se convergir, para qual
>>> limite.
>>>
>>> Se a(n) convergir para L, então  x^L = L.
>>>
>>> Com L = 2 e L = 4, x^L = L implica que x = raiz(2).
>>>
>>> Explorando numericamente com uma planilha, eu noto que para x = raiz(2),
>>> a sequência parece convergir para 2.
>>>
>>> O problema pode ser reformulado como sendo o de obter o maior intervalo
>>> I de R para o qual é possível definir uma função f:I -> R tal que f(x) =
>>> limite da sequência (a(n)) acima com valor inicial a(0) = x.
>>> Daí, a análise informal acima sugere que raiz(2) pertence a I,
>>> f(raiz(2)) = 2, e 4 não pertence a f(I).
>>>
>>> O que você está dizendo é que e^(1/e) = sup(I).  Vamos ver...
>>>
>>> Se f(x) = L, então x^L = L ==> x = L^(1/L).
>>> Agora, a função g(L) = L^(1/L) atinge seu valor máximo, igual a e^(1/e),
>>> para L = e.
>>> ( g(L) = e^log(L^(1/L)) = e^(log(L)/L) ==> g'(L) = g(L)*(1 - log(L))/L^2
>>> = 0 para L = e )
>>> Assim, se f(x) está definida, deve ser x <= e^(1/e).
>>> Além disso, numericamente parece plausível que f(e^(1/e)) = e.
>>> Se este for o caso, então, dado que e < 4, realmente 4 não pertence à
>>> imagem de f.
>>>
>>> []s,
>>> Claudio.
>>>
>>>
>>>
>>> On Wed, Nov 1, 2023 at 8:47 AM Pacini Bores <pacinibo...@gmail.com>
>>> wrote:
>>>
>>>> Olá pessoal, gostaria da opinão de vocês com relação a essas duas
>>>> equações, em que ambas , é claro garantindo a convergência, temos a mesma
>>>> resposta para "x". O que muitos falam que a segunda igualdade não é
>>>> possível. O que me intriga é que é possível mostrar( se não estiver
>>>> errado), é que o "x"  é que varia entre "0" e  " e^(1/e)" para que a
>>>> igualdade x^x^x..=k(k>0) e não o "k". Ou seja, há dois valores possíveis
>>>> para "k", enquanto há apenas um valor para "x".
>>>>
>>>> A minha pergunta : Estou errando em algo ?
>>>>
>>>> Pacini
>>>>
>>>> --
>>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>>> acredita-se estar livre de perigo.
>>>
>>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a