Vejam se este caminho é uma possibilidade (sujeita a ajustes e correções.
Fiquem à vontade!)
2022/2023 < a/b < 2023/2024 (I)
2022/2023 < (a+b-b)/b < 2023/2024
2022/2023 < (a+b)/b-b/b < 2023/2024
2022/2023 < (a+b)/b-1 < 2023/2024
2022/2023 +1< (a+b)/b-1 +1 < 2023/2024+1
(2022+2023)/2023 < (a+b)/b < (2023+2024)/2024
4045/2023 < (a+b)/b < 4047/2024
1,999505... aprox 2 < (a+b)/b < 1.999505... approx 2
*2 < (a+b)/b < 2     => (a+b)/b = 2            (II)*

De (I), tem-se que  2022/2023 = 0,999505... aprox 1 < a/b < 2023/2024 =
0,999505... aprox 1
*1 < a/b < 1             =>       a/b = 1          (III)*

Sendo a e b inteiros, de (II) e (III), pode-se concluir que a=b=-1 e
somando a+b = -2.

Atenciosamente,

Prof. Dsc. Alexandre Antunes
www alexandre antunes com br


Em seg., 26 de fev. de 2024 às 22:11, Pedro Júnior <
pedromatematic...@gmail.com> escreveu:

> Quem puder me ajudar, fixo grato.
>
> Sejam a e b dois números inteiros. Sabendo que 2022/2023 < a/b <
> 2023/2024, determine o menos calor da soma a + b.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a