Deveria ser a e b inteiros positivos, não?
Pois se forem inteiros sem restrição, então como 2022/2023 < 2022,5/2023,5
< 2023/2024, bastaria tomar a sequência:
a(n) = -20225*n  e  b(n) = -20235*n.
Daí teríamos 2022/2023 < a(n)/b(n) < 2023/2024 e a sequência a(n)+b(n)
seria ilimitada inferiormente.

Assim, suponhamos que a e b sejam inteiros positivos.
2022/2023 < a/b < 2023/2024 implica que b > a+1, já que a sequência
(n/(n+1)) é crescente.
Além disso, usando razões e proporções, achamos que:
2022 < a/(b-a) < 2023 < b/(b-a) < 2024
==> para que a+b seja o menor possível, b-a deverá ser o menor possível.
E o menor valor possível de b-a é 2.
Usando frações equivalentes, dá pra escrever 4044/4046 < a/b < 4046/4048 e
daí teríamos uma única fração a/b com b - a = 2.
Seria a/b = 4045/4047 ==> a+b mínimo = 8092.

[]s,
Claudio.




On Mon, Feb 26, 2024 at 10:12 PM Pedro Júnior <pedromatematic...@gmail.com>
wrote:

> Quem puder me ajudar, fixo grato.
>
> Sejam a e b dois números inteiros. Sabendo que 2022/2023 < a/b <
> 2023/2024, determine o menos calor da soma a + b.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a