It sounds like you are looking for a 3D meshing algorithm. I never have had
to work with one so I don't have any suggestions. Still knowing a name
sometimes helps. These are often used in FEM codes.

Cheers,

Joel

On Fri, Mar 2, 2012 at 1:08 PM, MARK BAKER <[email protected]> wrote:

> Cant I just add a extra Dimension to this some how
> that will hold the tetrahedron in that matrix..
>
> like this
> ############
> $x = zeros(3,1,1);
> pdl> p $x
>
> [
>  [
>   [0 0 0]
>  ]
> ]
> ############
> so if this represents my tetrahedron then
> ##############
> $x = zeros(3,1,2);
> pdl> p $x
>
> [
>  [
>   [0 0 0]
>  ]
>  [
>   [0 0 0]
>  ]
> ]
>
> ############
> represents two of these tetrahedrons!
>
> is this right ????
>
> Thanks Cheers
>
> -Mark R Baker
> [email protected]
>
>   ------------------------------
> *From:* MARK BAKER <[email protected]>
> *To:* perldl Users <[email protected]>
> *Sent:* Wednesday, February 29, 2012 1:19 AM
> *Subject:* [Perldl] Tetrahedron Space Framework
>
>
>
> Hey every one I wonder if someone could help me with this
> as Im lost on how to do this .. well here is my tetrahedron code
> #######################################################
> use PDL;use PDL::Graphics::TriD;
> use PDL::Math; nokeeptwiddling3d;
>                                            #sin
>  for $c(1..199999){$n=6.28*$c; $t=$c*rvals(exp(zeros(10000))*$c);
>                      #cos
>  $cz=-1**$t*$c;$cy=-1**$t*sin$t*$c;
>                         #cos                #sin             #sin
>  $cx=-1**$c*rvals($t)*$c;
>  $g=sin($w=$cz-$cy-$cx);
>  $r=sin(cos$cy+$c+$cz);
>  $b=cos$w;
>                                              #cos
>  $i=($cz-$cx-$cy);$q=$i*$n;
>
> $x=$b*sin$q;
> $y=$r*cos$q;
> $z=$g*sin$q;
>
>  $xx= ($x*$y*$z);
>
> points3d [ (sin($xx**1/2)/$x,tan($xx**1/2)/$y,sin($xx**1/2)/$z)];
> ########################################################
>
> now here is the  lattice code
> #######################################################
>  use PDL;use PDL::Graphics::TriD;
> use PDL::Math; nokeeptwiddling3d;
> {
> points3d ndcoords(7,7,7)->clump(1,2,3), {PointSize=>2} ;
> redo }
> ######################################################
>
> so im wondering how do I replace those points in the clump there
> with my tetrahedrons...  so that I have a lattice of tetrahedrons ???
>
> I have been looking at a theory that merges String Theory Quantum
> Mechanics and General Relativity
> if I can get a bunch of tetrahedrons in a lattice that will be half my
> battle...
> the other half involves getting them to effect each other ...
>
> any thought on how to do this properly or at all ???
>
>
> -Mark R Baker
>
>
>
> _______________________________________________
> Perldl mailing list
> [email protected]
> http://mailman.jach.hawaii.edu/mailman/listinfo/perldl
>
>
>
> _______________________________________________
> Perldl mailing list
> [email protected]
> http://mailman.jach.hawaii.edu/mailman/listinfo/perldl
>
>
_______________________________________________
Perldl mailing list
[email protected]
http://mailman.jach.hawaii.edu/mailman/listinfo/perldl

Reply via email to