If a floating point number (a) , is irrational, then (x:a) has a denominator
greater than 1e10.
Some rational and irrational numbers are:
x:%%:>:i.5
1 676982533219r957397879968 9943229281777r17222178307344 1r2
8728368286235r19517224820674
The denominators are:
1 957397879968 17222178307344 2 19517224820674
1 9.57398e11 1.72222e13 2 1.95172e13
So the problem of identifying irrational numbers is reduced to the problem of
finding the denominator in x:a
/Bo.
Den 23:42 onsdag den 13. juni 2018 skrev Linda Alvord
<[email protected]>:
I wrote a definition with only one argument.
Linda
Get Outlook for Android<https://aka.ms/ghei36>
________________________________
From: Programming <[email protected]> on behalf of Raul
Miller <[email protected]>
Sent: Wednesday, June 13, 2018 4:36:31 PM
To: Programming forum
Subject: Re: [Jprogramming] Finding Irrational Numbers
So, something like this?
fe=:4 :0
p=. 9!:10''
vi=. _.
ve=. y
try.
9!:11 x
ve=. ":&.>y
9!:11]15
vi=. ":&.>y
catch.
end.
9!:11 p
ve=vi
)
Thanks,
--
Raul
On Wed, Jun 13, 2018 at 4:22 PM Skip Cave <[email protected]> wrote:
>
> So I'm thinking something like this, to find exact numbers in a floating
> point array:
>
>
> pps 15 NB. Set the print precision.
>
>
> Create a mixed floating point vector b:
>
>
> ]b=:(,3? 10^1+i.4),%a=:1+i.20
>
> 0 2 7 36 93 57 808 875 559 4674 8635 6196 1 0.5 0.333333333333333 0.25 0.2
> 0.166666666666667 0.142857142857143 0.125 0.111111111111111 0.1
> 0.0909090909090909 0.0833333333333333 0.0769230769230769 0.0714285714285714
> 0.0666666666666667 0.0625 0.0588235294117...
>
>
> Create a "find exact" verb 'fe' where x=the number of digits max that can
> be exact, and y is the vector to be tested (boolean result):
>
>
> fe=. 4 : 'x> ># each ": each <"1,.y'
>
>
> ]c=.9 fe b
>
> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1
>
>
> Show exact:
>
> c#b
>
> 0 2 7 36 93 57 808 875 559 4674 8635 6196 1 0.5 0.25 0.2 0.125 0.1 0.0625
> 0.05
>
>
> Show inexact:
>
> (-.c)#b
>
> 0.333333333333333 0.166666666666667 0.142857142857143 0.111111111111111
> 0.0909090909090909 0.0833333333333333 0.0769230769230769 0.0714285714285714
> 0.0666666666666667 0.0588235294117647 0.0555555555555556 0.0526315789473684
>
> #b
>
> 32
>
> #c#b
>
> 20
>
>
> I'm sure this scheme has some holes, but it is a reasonable first cut.
>
>
> Skip
> ----------------------------------------------------------------------
> For information about J forums see
> https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=02%7C01%7C%7C41ac47c72e1441cc1f0b08d5d16d6b12%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C636645190246397362&sdata=C%2B8YZ2EAW533k4brRJj7gZXQzxUXVbnCthCXYM1YZ1I%3D&reserved=0
----------------------------------------------------------------------
For information about J forums see
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=02%7C01%7C%7C41ac47c72e1441cc1f0b08d5d16d6b12%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C636645190246397362&sdata=C%2B8YZ2EAW533k4brRJj7gZXQzxUXVbnCthCXYM1YZ1I%3D&reserved=0
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm