I think the CRT is related ( 
https://en.wikipedia.org/wiki/Chinese_remainder_theorem ) in the sense that it 
is about modulo arithmetic and congruences, but I am not sure it has much to do 
with permutations fo the moduli. It states that given some pairwise coprime x1 
x2 x3 ... xk, then 
if N = */ x1 x2 x3 ... xk
and we choose any a1 a2 a3 ... ak
then there must be some X such that
X = (x1|a1), X = (x2|a2) ,....

e.g. k = 3 5 7 (all mutually coprime)

k=: 3 5 7
a=: 9 2 11 NB. arbitrary a's

N=: */k
KA=: k | a

I. KA -:"1 1 |: k |"0 _[ i. 1000 NB. look for X up to 1000
102 207 312 417 522 627 732 837 942

can confirm that

k | 102

is the same as

k | a

Doesnt work if the k's are not coprime (e.g. k =: 3 6 11)     On Wednesday, 
January 29, 2020, 12:10:28 PM GMT+9, Henry Rich <henryhr...@gmail.com> wrote:  
 
 This is the Chinese Remainder Theorem, no?

Henry Rich

On 1/28/2020 9:49 PM, 'Jon Hough' via Programming wrote:
>  See Modulo Multiplication Group:
> https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
> http://mathworld.wolfram.com/ModuloMultiplicationGroup.html
>
>
> Since 11 is prime, its modulo multiplication group has 10 elements (all the 
> numbers from 1 to 10). i.e. multiplying the elements by any
> number in 1 to 10 will permute the elements.
>
> If you used 8, say, instead. 8 is only coprime to 1,3,5,7. So its Modulo 
> multiplication group has only 4 elements.
> If you do
> 8 | 2 * i.8
> you do not get a permutation of the numbers of i.8, because 2 and 8 are not 
> coprime.
>
> A long time ago I wrote a script to calculate the modulo multiplication group 
> for arbitrary integers.
> https://github.com/jonghough/PermuJ/blob/master/modulomultiplication.ijs
>
>      On Wednesday, January 29, 2020, 10:20:12 AM GMT+9, Jimmy Gauvin 
><jimmy.gau...@gmail.com> wrote:
>  
>  Hi,
>
> I am looking for some reference texts on permutations and modular
> arithmetic.
>
> I recently stumbled on some interesting properties of card shuffles.
> For example, using a deck of 11 cards labeled 0 through 10 and shuffling
> them to obtain this layout :
>
>    0  6  1  7  2  8  3  9  4 10
>
> There are several ways to find out which position each card occupies .
> 1) index of
>    0  6  1  7  2  8  3  9  4 10 i. i.11
> 0  2  4  6  8 10  1  3  5  7  9
> 2) grading
>    /: 0  6  1  7  2  8  3  9  4 10
> 0  2  4  6  8 10  1  3  5  7  9
> 3) and computing the positions with modulo
>    11 | 2*i.11
> 0  2  4  6  8 10  1  3  5  7  9
>
> Going from the positions to the card layout can also be done several ways :
> 4) assignment
>    (i.11) ( 0  2  4  6  8 10  1  3  5  7  9 ) } 11$0
> 0  6  1  7  2  8  3  9  4 10
> 5) grading
>    /: 0  2  4  6  8 10  1  3  5  7  9
> 0  6  1  7  2  8  3  9  4 10
> 6) and, this is the kicker for me, modulo with the right multiplier
>    11 | 6*i.11
> 0  6  1  7  2  8  3  9  4 10
>
> While 3) is obvious, I find 6) disconcerting. And it seems  to work for all
> cases where the number of cards and the interval between cards are coprime.
>
> I know this must be explained somewhere but I can't find the relevant
> material.
>
> Thanks for your assistance,
>
> Jimmy
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>    
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
  
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to