Folks,

I need to store MaskedArrays in a HDF5 file, and retrieve them as such. I 
wrote a small subclass of Table (MaskedTable, cf a simplified version below) 
that overwrites the __init__ and read methods, so that I can just pass a 
masked array, store it as a recarray and read it back to a MaskedArray, 
seamlessly.

Well, it doesn't really work as expected: when I write a MaskedTable to a 
file, it is recognized as that subclass. When I close a file, reopen it and 
access the table, it reverts to a standard Table, and of course my tailored 
read method isn't accessed. The behavior is illustrated below.
Obviously, I missing something: is there an attribute that I'm not setting 
that would let the file recognize that its tables are in fact MaskedTables?

Thanks a lot in advance...






############################
import numpy as np
import numpy.ma as ma

import tables
from tables import File, Table
from tables.file import _checkfilters
from tables.parameters import EXPECTED_ROWS_TABLE

class MaskedTable(Table):
    def __init__(self,parentNode, name, maskedarray,
                 title="", filters=None,
                 expectedrows=EXPECTED_ROWS_TABLE,
                 chunkshape=None, byteorder=None, _log=True):
        description = np.array(zip(maskedarray.filled().flat,
                                   ma.getmaskarray(maskedarray).flat),
                               dtype=[('_data',maskedarray.dtype),
                                      ('_mask',bool)])
        Table.__init__(self,parentNode, name, 
                       description=description, title=title, filters=filters,
                       expectedrows=expectedrows,
                       chunkshape=chunkshape, byteorder=byteorder, _log=_log)
        self.attrs.SHAPE = maskedarray.shape

    def read(self, start=None, stop=None, step=None, field=None):
        data = Table.read(self, start=start, stop=stop, step=step, 
field=field)
        newshape = self.attrs.SHAPE
        return ma.array(data['_data'], mask=data['_mask']).reshape(newshape)


def createMaskedTable(self, where, name, maskedarray, title="",
                      filters=None, expectedrows=10000,
                      chunkshape=None, byteorder=None,
                      createparents=False):
    parentNode = self._getOrCreatePath(where, createparents)
    _checkfilters(filters)
    return MaskedTable(parentNode, name, maskedarray,
                       title=title, filters=filters, 
expectedrows=expectedrows,
                       chunkshape=chunkshape, byteorder=byteorder)
File.createMaskedTable = createMaskedTable


if __name__ == '__main__':
    x = ma.array(np.random.rand(100),mask=(np.random.rand(100) > 0.7))
    h5file = tables.openFile('tester.hdf5','w')
    mtab = h5file.createMaskedTable('/','random',x)
    h5file.flush()
    print type(mtab)
    print mtab.read()
    h5file.close()
    h5file = tables.openFile('tester.hdf5','r')
    mtab = h5file.root.random
    print type(mtab)
    print mtab.read()

-------------------------------------------------------------------------
This SF.net email is sponsored by: Microsoft
Defy all challenges. Microsoft(R) Visual Studio 2008.
http://clk.atdmt.com/MRT/go/vse0120000070mrt/direct/01/
_______________________________________________
Pytables-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/pytables-users

Reply via email to