[Chris Angelico, on "probable prime" testers] > You can say that about algorithms easily enough. My point is that this > ought to be a constraint on the function - implementations may choose > other algorithms, but they MUST follow one pattern or the other, > meaning that a Python script can depend on it without knowing the > implementation. Like guaranteeing that list.sort() is stable without > stipulating the actual sort algo used. >
I agree! Don't worry about it - if this module gets added, I'll make sure of it. My own "probable prime" function starts like so: def pp(n, k=10): """ Return True iff n is a probable prime, using k Miller-Rabin tests. When False, n is definitely composite. """ In the context of algorithmic number theory, "no false negatives" is implied by that context, but it should be spelled out anyway. A "probable prime", by definition, is an integer that satisfies some property that _all_ primes satisfy, but that some composites may satisfy too. The variation among probable prime algorithms is in which specific property(ies) they test for. For example: def pp1(n): return True meets the promise, but is useless ;-) def pp2(n): return n % 3 != 0 or n == 3 is slightly less useless. But def pp3(n): return n % 3 != 0 would be incorrect, because pp3(3) returns False - `n % 3 != 0` is not a property that all primes satisfy.
_______________________________________________ Python-ideas mailing list Python-ideas@python.org https://mail.python.org/mailman/listinfo/python-ideas Code of Conduct: http://python.org/psf/codeofconduct/