No, no. Si construyes el modelo con todos los datos, explícame para qué te ha servido la validación cruzada... ¿Sólo para saber si funciona mejor SVM o RF con ese conjunto de datos? Eso es insuficiente. Cuando construyes un modelo, lo haces entrenando con datos que el modelo NO VE, ahí está la gracia... Te tienes que quedar con el mejor modelo entrenado. Y después ver cómo te funciona en la vida real, es decir, con nuevos datos que el modelo NO HA VISTO.
Un saludo. Isidro Hidalgo Arellano Observatorio del Mercado de Trabajo Consejería de Economía, Empresas y Empleo http://www.castillalamancha.es/ -----Mensaje original----- De: R-help-es [mailto:r-help-es-boun...@r-project.org] En nombre de Jesús Para Fernández Enviado el: viernes, 02 de junio de 2017 11:48 Para: r-help-es@r-project.org Asunto: [R-es] CV en R Buenas, Estoy haciendo modelos y comparando cual es mejor. Para ello, uso CV de 10 folds. Por ejemplo, hago la comparativa entre un svm y un randomForest para una serie de datos, por ello hago: midataset<-import..... #datos es un dataframe de 1500 filas y 15 variables for(i in 1:10){ numeros<-sample(1:1500,1500*0.7) train<-datos[numeros,] test<-datos[-numeros,] #modeloRF modelo.rf<-randomForest(respuesta~,train) prediccion<-predict(modelo.rf,test) fp<-table(prediccion,test$respuesta)[2,1] fn<-table(prediccion,test$respuesta)[1,2] error<-(fp+fn)/nrow(train.balanceado) resultado<-rbind(resultado,data.frame(error=error,modelo="rf")) #modelo SVM modelo.svm<-svm(respuesta~,train) prediccion<-predict(modelo.svm,test) fp<-table(prediccion,test$respuesta)[2,1] fn<-table(prediccion,test$respuesta)[1,2] error<-(fp+fn)/nrow(train.balanceado) resultado<-rbind(resultado,data.frame(error=error,modelo="svm")) } Mi pregunta es la siguiente. Si el modelo de RF es mejor, como me quedo con el modelo final? Tengo que crear el modelo de nuevo, sin tener en cuenta el train? modelo.final<-randomForest(respuesta~.,datos) Gracias!!!! [[alternative HTML version deleted]] _______________________________________________ R-help-es mailing list R-help-es@r-project.org https://stat.ethz.ch/mailman/listinfo/r-help-es _______________________________________________ R-help-es mailing list R-help-es@r-project.org https://stat.ethz.ch/mailman/listinfo/r-help-es