Hi
I have a dataset of the type attached.
Here's my code thus far.
dataset <-data.frame(read.delim("data", sep="\t", header=TRUE));
newData<-subset(dataset, select = c(Price, Reliability, Mileage, Weight,
Disp, HP));
cor(newData, method="pearson");
Results are
                 Price Reliability    Mileage     Weight       Disp
HP
Price        1.0000000          NA -0.6537541  0.7017999  0.4856769
 0.6536433
Reliability         NA           1         NA         NA         NA
NA
Mileage     -0.6537541          NA  1.0000000 -0.8478541 -0.6931928
-0.6667146
Weight       0.7017999          NA -0.8478541  1.0000000  0.8032804
 0.7629322
Disp         0.4856769          NA -0.6931928  0.8032804  1.0000000
 0.8181881
HP           0.6536433          NA -0.6667146  0.7629322  0.8181881
 1.0000000

It appears that Wt and Price, Wt and Disp, Wt and HP, Disp and HP, HP and
Price are strongly correlated.
To find the statistical significance,
I am trying  sample.correln<-cor.test(newData$Disp, newData$HP,
method="kendall", exact=NULL)
Kendall's rank correlation tau

data:  newx$Disp and newx$HP
z = 7.2192, p-value = 5.229e-13
alternative hypothesis: true tau is not equal to 0
sample estimates:
      tau
0.6563871

If I try the same with
sample.correln<-cor.test(newData$Disp, newData$HP, method="pearson",
exact=NULL)
I get Warning message:
In cor.test.default(newx$Disp, newx$HP, method = "spearman", exact = NULL) :
  Cannot compute exact p-value with ties
> sample.correln

Spearman's rank correlation rho

data:  newx$Disp and newx$HP
S = 5716.8, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho
0.8411566

I am not sure how to interpret these values.
Basically, I am trying to figure out which combination of factors
influences efficiency.

Thanks
Lalitha
Price   Country Reliability     Mileage Type    Weight  Disp.   HP


8895    USA     4       33      Small   2560    97      113


7402    USA     2       33      Small   2345    114     90


6319    Korea   4       37      Small   1845    81      63


6635    Japan/USA       5       32      Small   2260    91      92


6599    Japan   5       32      Small   2440    113     103


8672    Mexico  4       26      Small   2285    97      82


7399    Japan/USA       5       33      Small   2275    97      90


7254    Korea   1       28      Small   2350    98      74


9599    Japan   5       25      Small   2295    109     90


5866    Japan   NA      34      Small   1900    73      73


8748    Japan/USA       5       29      Small   2390    97      102


6488    Japan   5       35      Small   2075    89      78


9995    Germany 3       26      Small   2330    109     100


11545   USA     1       20      Sporty  3320    305     170


9745    USA     1       27      Sporty  2885    153     100


12164   USA     1       19      Sporty  3310    302     225


11470   USA     3       30      Sporty  2695    133     110


9410    Japan   5       33      Sporty  2170    97      108


13945   Japan   5       27      Sporty  2710    125     140


13249   Japan   3       24      Sporty  2775    146     140


10855   USA     NA      26      Sporty  2840    107     92


13071   Japan   NA      28      Sporty  2485    109     97


18900   Germany NA      27      Compact 2670    121     108


10565   USA     2       23      Compact 2640    151     110


10320   USA     1       26      Compact 2655    133     95


10945   USA     4       25      Compact 3065    181     141


9483    USA     2       24      Compact 2750    141     98


12145   Japan/USA       5       26      Compact 2920    132     125


12459   Japan/USA       4       24      Compact 2780    133     110


10989   Japan   5       25      Compact 2745    122     102


17879   Japan   4       21      Compact 3110    181     142


11650   Japan   5       21      Compact 2920    146     138


9995    USA     2       23      Compact 2645    151     110


15930   France  NA      24      Compact 2575    116     120


11499   Japan/USA       5       23      Compact 2935    135     130


11588   Japan/USA       5       27      Compact 2920    122     115


18450   Sweden  3       23      Compact 2985    141     114


24760   Japan   5       20      Medium  3265    163     160


13150   USA     3       21      Medium  2880    151     110


12495   USA     2       22      Medium  2975    153     150


16342   USA     3       22      Medium  3450    202     147


15350   USA     2       22      Medium  3145    180     150


13195   USA     3       22      Medium  3190    182     140


14980   USA     1       23      Medium  3610    232     140


9999    Korea   NA      23      Medium  2885    143     110


23300   Japan   5       21      Medium  3480    180     158


17899   Japan   5       22      Medium  3200    180     160


13150   USA     2       21      Medium  2765    151     110


14495   USA     NA      21      Medium  3220    189     135


21498   Japan   3       23      Medium  3480    180     190


16145   USA     3       23      Large   3325    231     165


14525   USA     1       18      Large   3855    305     170


17257   USA     3       20      Large   3850    302     150


13995   USA     NA      18      Van     3195    151     110


15395   USA     3       18      Van     3735    202     150


12267   USA     3       18      Van     3665    182     145


14944   Japan   5       19      Van     3735    181     150


14929   Japan   NA      20      Van     3415    143     107


13949   Japan   NA      20      Van     3185    146     138


14799   Japan   NA      19      Van     3690    146     106


______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to