Dear Gabor,

Many thanks. That snippet of code also works for me (below). I am currently on 2.8.0.

However, it continues to fail on the specific data I am using. I have attached the data in data.RData, attached here. If you save this file into the working directory and run the following, that should illustrate the problem.

library(zoo)
load("data.RData")
regrlm<-lm(foo~bar+baz)
regrlm
summary(regrlm)

If you get the chance, would be interested to see if it fails for you as well.

Thanks again,
Tolga

############ Gabor's code ####################
> library(zoo)
> z <- 1:10
> x <- z*z
> y <- x*z
> lm(z ~ x + y)

Call:
lm(formula = z ~ x + y)

Coefficients:
(Intercept) x y
1.24700 0.20194 -0.01164

> summary(lm(z ~ x + y))

Call:
lm(formula = z ~ x + y)

Residuals:
Min 1Q Median 3Q Max
-0.43730 -0.14095 0.01808 0.19070 0.26702

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.246998 0.179253 6.957 0.000220 ***
x 0.201943 0.015878 12.718 4.3e-06 ***
y -0.011642 0.001579 -7.375 0.000153 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2598 on 7 degrees of freedom
Multiple R-squared: 0.9943, Adjusted R-squared: 0.9926
F-statistic: 607.6 on 2 and 7 DF, p-value: 1.422e-08

> sessionInfo()
R version 2.8.0 (2008-10-20)
i386-pc-mingw32

locale:
LC_COLLATE=English_United Kingdom.1252;LC_CTYPE=English_United Kingdom.1252;LC_MONETARY=English_United Kingdom.1252;LC_NUMERIC=C;LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] lpSolve_5.6.4 leaps_2.7 nortest_1.0
[4] numDeriv_2006.4-1 bcp_2.1 snow_0.3-3
[7] fArma_270.74 fBasics_280.74 timeSeries_280.78
[10] timeDate_280.80 PerformanceAnalytics_0.9.7.1 tseries_0.10-16
[13] quadprog_1.4-11 vars_1.4-0 urca_1.1-7
[16] MASS_7.2-44 MSBVAR_0.3.2 coda_0.13-3
[19] lattice_0.17-15 xtable_1.5-4 KernSmooth_2.22-22
[22] RODBC_1.2-3 corrgram_0.1 nlme_3.1-89
[25] lmtest_0.9-21 car_1.2-9 strucchange_1.3-4
[28] sandwich_2.1-0 zoo_1.5-4

loaded via a namespace (and not attached):
[1] grid_2.8.0 tools_2.8.0
>



Gabor Grothendieck wrote:
Try upgrading to R 2.8.0 patched.  This works for me
using R 2.8.0 patched from Nov 10th:

library(zoo)
z <- 1:10
x <- z*z
y <- x*z
lm(z ~ x + y)
summary(lm(z ~ x + y))

packageDescription("zoo")$Version
[1] "1.5-4"
R.version.string # Vista
[1] "R version 2.8.0 Patched (2008-11-10 r46884)"


On Sun, Nov 16, 2008 at 7:32 AM, Tolga Uzuner <[EMAIL PROTECTED]> wrote:
Dear R Users,

I am having a weird problem. I have three zoo time series, foo, bar and baz.
I run a simple linear regression with foo as the dependent and bar+baz as
independents. Even though the regression runs fine, summary seems to
fail.The code is below. I am happy to send the data along. I am on R 2.8.0
and Windows XP SP2. Traceback (below, a ton of numbers cut out to make it
readable but I can provide the data). reveals the problem is in a function
called gt. sessioninfo is at the bottom.

Any suggestions ? I upgraded to 2.8.0 this morning after replaced 2.7.1 and
I almost feel the new version is at fault but I could be inferring too
much...

Thanks in advance,
Tolga

cooks.distance also reveals the same problem.

length(foo)
[1] 258
length(foo)
[1] 258
length(bar)
[1] 258
length(baz)
[1] 258
regrlm<-lm(foo~bar+baz)
regrlm
Call:
lm(formula = foo ~ bar + baz)

Coefficients:
(Intercept)          bar          baz   1082.39        12.72    -20176.67
summary(regrlm)
Call:
lm(formula = foo ~ bar + baz)

Residuals:
Error in if (xi == xj) 0L else if (xi > xj) 1L else -1L :
 argument is of length zero
traceback()
19: .gt(c(145.181456007549, 118.279525850693, 111.250750147955,
89.1393551953539,
MANY MANY NUMBERS
  -67.9948569260507, -146.080176235300), 250L, 246L)
18: switch(ties.method, average = , min = , max = .Internal(rank(x[!nas],
      ties.method)), first = sort.list(sort.list(x[!nas])), random =
sort.list(order(x[!nas],
      stats::runif(sum(!nas)))))
17: rank(x, ties.method = "min", na.last = "keep")
16: as.vector(rank(x, ties.method = "min", na.last = "keep"))
15: xtfrm.default(x)
14: xtfrm(x)
13: FUN(X[[1L]], ...)
12: lapply(z, function(x) if (is.object(x)) xtfrm(x) else x)
11: order(x, na.last = na.last, decreasing = decreasing)
10: `[.zoo`(x, order(x, na.last = na.last, decreasing = decreasing))
9: x[order(x, na.last = na.last, decreasing = decreasing)]
8: sort.default(x, partial = unique(c(lo, hi)))
7: sort(x, partial = unique(c(lo, hi)))
6: quantile.default(resid)
5: quantile(resid)
4: structure(quantile(resid), names = nam)
3: print.summary.lm(list(call = lm(formula = foo ~ bar + baz), terms = foo ~
     bar + baz, residuals = c(145.181456007549, 118.279525850693,
MANY MANY NUMBERS   -97.6817272270226, -101.621851940748, -67.9948569260507,
-146.080176235300
 ), coefficients = c(1082.39330190496, 12.7191319384837, -20176.6660075191,
 36.7646530199551, 0.752346859475059, 1097.00127070372, 29.4411401439708,
 16.9059414262171, -18.3925639343844, 5.30095123419022e-84,
1.60626441787295e-43,
 1.15247513614373e-48), aliased = c(FALSE, FALSE, FALSE), sigma =
90.0587318356495,
     df = c(3L, 255L, 3L), r.squared = 0.767559392535633, adj.r.squared =
0.765736328947677,
     fstatistic = c(421.027219021081, 2, 255), cov.unscaled =
c(0.166651523684348,
     -0.00308410770161002, -3.08083131687658, -0.00308410770161002,
     6.9788613558326e-05, 0.0263943284503598, -3.08083131687658,
     0.0263943284503598, 148.375640597725)))
2: print(list(call = lm(formula = foo ~ bar + baz), terms = foo ~
     bar + baz, residuals = c(145.181456007549, 118.279525850693,
MANY MANY NUMBERS
 -97.6817272270226, -101.621851940748, -67.9948569260507, -146.080176235300
 ), coefficients = c(1082.39330190496, 12.7191319384837, -20176.6660075191,
 36.7646530199551, 0.752346859475059, 1097.00127070372, 29.4411401439708,
 16.9059414262171, -18.3925639343844, 5.30095123419022e-84,
1.60626441787295e-43,
 1.15247513614373e-48), aliased = c(FALSE, FALSE, FALSE), sigma =
90.0587318356495,
     df = c(3L, 255L, 3L), r.squared = 0.767559392535633, adj.r.squared =
0.765736328947677,
     fstatistic = c(421.027219021081, 2, 255), cov.unscaled =
c(0.166651523684348,
     -0.00308410770161002, -3.08083131687658, -0.00308410770161002,
     6.9788613558326e-05, 0.0263943284503598, -3.08083131687658,
     0.0263943284503598, 148.375640597725)))
1: print(list(call = lm(formula = foo ~ bar + baz), terms = foo ~
     bar + baz, residuals = c(145.181456007549, 118.279525850693,
MANY MANY NUMBERS   -97.6817272270226, -101.621851940748, -67.9948569260507,
-146.080176235300
 ), coefficients = c(1082.39330190496, 12.7191319384837, -20176.6660075191,
 36.7646530199551, 0.752346859475059, 1097.00127070372, 29.4411401439708,
 16.9059414262171, -18.3925639343844, 5.30095123419022e-84,
1.60626441787295e-43,
 1.15247513614373e-48), aliased = c(FALSE, FALSE, FALSE), sigma =
90.0587318356495,
     df = c(3L, 255L, 3L), r.squared = 0.767559392535633, adj.r.squared =
0.765736328947677,
     fstatistic = c(421.027219021081, 2, 255), cov.unscaled =
c(0.166651523684348,
     -0.00308410770161002, -3.08083131687658, -0.00308410770161002,
     6.9788613558326e-05, 0.0263943284503598, -3.08083131687658,
     0.0263943284503598, 148.375640597725)))
sessionInfo()
R version 2.8.0 (2008-10-20)
i386-pc-mingw32

locale:
LC_COLLATE=English_United Kingdom.1252;LC_CTYPE=English_United
Kingdom.1252;LC_MONETARY=English_United
Kingdom.1252;LC_NUMERIC=C;LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base
other attached packages:
[1] lpSolve_5.6.4                leaps_2.7                  [3] nortest_1.0
                 numDeriv_2006.4-1          [5] bcp_2.1
 snow_0.3-3                 [7] fArma_270.74                 fBasics_280.74
            [9] timeSeries_280.78            timeDate_280.80            [11]
PerformanceAnalytics_0.9.7.1 tseries_0.10-16            [13] quadprog_1.4-11
             vars_1.4-0                 [15] urca_1.1-7
MASS_7.2-44                [17] MSBVAR_0.3.2                 coda_0.13-3
           [19] lattice_0.17-15              xtable_1.5-4               [21]
KernSmooth_2.22-22           RODBC_1.2-3                [23] corrgram_0.1
              nlme_3.1-89                [25] lmtest_0.9-21
 car_1.2-9                  [27] strucchange_1.3-4            sandwich_2.1-0
            [29] zoo_1.5-4
loaded via a namespace (and not attached):
[1] grid_2.8.0  tools_2.8.0
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.



______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to