x wrote:
Hi,

My code, output, error message, and sample data are all below. As always, all 
help is appreciated.

Code:
====
library(Design); library(lattice)

df = read.table("./data_cub4.txt", header=TRUE, nrows=100)
attach(df); dd = datadist(df); options(datadist = 'dd'); describe(df);

m = (y1 ~ ( rcs(x1,3) + rcs(x2,3) ) )
f = ols(m, data=df)
print(f)
print( Function(f) )
detach(df)

Output:
======
Linear Regression Model ...
n Model L.R. d.f. R2 Sigma 100 720.7 4 0.9993 82.44 Residuals: Min 1Q Median 3Q Max -113.21 -70.46 -20.09 65.77 214.77 Coefficients:
           Value Std. Error         t Pr(>|t|)
Intercept 757.85  1.647e+17 4.601e-15        1
x1         35.58  9.080e+14 3.919e-14        1
x1'        85.92  6.475e+14 1.327e-13        1
x2            NA  1.797e+14        NA       NA
x2'           NA  6.475e+14        NA       NA

Residual standard error: 82.44 on 95 degrees of freedom
Adjusted R-Squared: 0.9992
Error in if (coef[i] > 0 & (i > 2 | coef[1] != 0 | Intc != 0)) "+" else NULL : 
missing value where TRUE/FALSE needed

Sample data:
=================
config  benchmark       y1      x1      x2      noise
1       verify2 1008.2  1       1000    0.72
2       verify2 1019    2       999     1.6


It just appears that you have perfect prediction, so you have quite an unusual dataset to be doing inference on.

Frank



--
Frank E Harrell Jr   Professor and Chair           School of Medicine
                     Department of Biostatistics   Vanderbilt University

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to