It is really too few species to have a sufficiently powerful test for 
phylogenetic signal.  See Blomberg et al. (2003), available on my website.

Cheers,
Ted

Theodore Garland, Jr.
Professor
Department of Biology
University of California, Riverside
Riverside, CA 92521
Office Phone:  (951) 827-3524
Wet Lab Phone:  (951) 827-5724
Dry Lab Phone:  (951) 827-4026
Home Phone:  (951) 328-0820
Facsimile:  (951) 827-4286 = Dept. office (not confidential)
Email:  tgarl...@ucr.edu
http://www.biology.ucr.edu/people/faculty/Garland.html

Experimental Evolution: Concepts, Methods, and Applications of Selection 
Experiments. 2009.
Edited by Theodore Garland, Jr. and Michael R. Rose
http://www.ucpress.edu/book.php?isbn=9780520261808
(PDFs of chapters are available from me or from the individual authors)

________________________________________
From: r-sig-phylo-boun...@r-project.org [r-sig-phylo-boun...@r-project.org] on 
behalf of Rob Lanfear [rob.lanf...@gmail.com]
Sent: Wednesday, March 14, 2012 8:18 PM
To: r-sig-phylo
Subject: [R-sig-phylo] Testing for phylogenetic signal in proportions

Hi All,

I've tried searching the literature for this but the search terms tend to
give irrelevant papers, so I thought I'd ask for some guidance here.

I have a set of 11 species, an ultrametric tree for the species, and for
each species I have a set of proportional data for 5 chemical traits. E.g.
for spp1 my data might be: chemicalA=10%, chemicalB=50%, chemicalC=1%,
chemicalD=19%, chemicalE=20%. The set of traits for each species always
sums to 100%, but I don't know, and can't measure, the absolute values of
the traits. Biologically speaking, this is OK, because it's the proportions
that I'm interested in.

I want to test for phylogenetic signal in these traits, and estimate the
rate of change of each proportion along the phylogeny. Can anyone point me
to any appropriate references for the methods and pitfalls of attempting to
do this with proportion data? I can see that proportional data will have
some odd properties (non-independence of traits, bounded (i.e.
non-Brownian) evolution, etc.), but the best way of accounting for these is
not immediately apparent to me.

Thanks,

Rob

--
Rob Lanfear
Research Fellow,
Ecology, Evolution, and Genetics,
Research School of Biology,
Australian National University

Tel: +61 2 6125 4321
www.robertlanfear.com

        [[alternative HTML version deleted]]

_______________________________________________
R-sig-phylo mailing list
R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo

_______________________________________________
R-sig-phylo mailing list
R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo

Reply via email to