Github user marmbrus commented on a diff in the pull request: https://github.com/apache/spark/pull/15102#discussion_r81834388 --- Diff: docs/structured-streaming-kafka-integration.md --- @@ -0,0 +1,231 @@ +--- +layout: global +title: Structured Streaming + Kafka Integration Guide (Kafka broker version 0.10.0 or higher) +--- + +Structured Streaming integration for Kafka 0.10 to poll data from Kafka. It provides simple parallelism, +1:1 correspondence between Kafka partitions and Spark partitions. The source will cache the Kafka +consumer in executors and try the best to schedule the same Kafka topic partition to the same executor. + +### Linking +For Scala/Java applications using SBT/Maven project definitions, link your application with the following artifact: + + groupId = org.apache.spark + artifactId = spark-sql-kafka-0-10_{{site.SCALA_BINARY_VERSION}} + version = {{site.SPARK_VERSION_SHORT}} + +For Python applications, you need to add this above library and its dependencies when deploying your +application. See the [Deploying](#deploying) subsection below. + +### Creating a Kafka Source Stream + +<div class="codetabs"> +<div data-lang="scala" markdown="1"> + + // Subscribe to 1 topic + val ds1 = spark + .readStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1") + .load() + ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + .as[(String, String)] + + // Subscribe to multiple topics + val ds2 = spark + .readStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1,topic2") + .load() + ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + .as[(String, String)] + + // Subscribe to a pattern + val ds3 = spark + .readStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribePattern", "topic.*") + .load() + ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + .as[(String, String)] + +</div> +<div data-lang="java" markdown="1"> + + // Subscribe to 1 topic + Dataset<Row> ds1 = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1") + .load() + ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + + // Subscribe to multiple topics + Dataset<Row> ds2 = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1,topic2") + .load() + ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + + // Subscribe to a pattern + Dataset<Row> ds3 = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribePattern", "topic.*") + .load() + ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + +</div> +<div data-lang="python" markdown="1"> + + # Subscribe to 1 topic + ds1 = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1") + .load() + ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + + # Subscribe to multiple topics + ds2 = spark + .readStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1,topic2") + .load() + ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + + # Subscribe to a pattern + ds3 = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribePattern", "topic.*") + .load() + ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") + +</div> +</div> + +Each row in the source has the following schema: +<table class="table"> +<tr><th>Column</th><th>Type</th></tr> +<tr> + <td>key</td> + <td>binary</td> +</tr> +<tr> + <td>value</td> + <td>binary</td> +</tr> +<tr> + <td>topic</td> + <td>string</td> +</tr> +<tr> + <td>partition</td> + <td>int</td> +</tr> +<tr> + <td>offset</td> + <td>long</td> +</tr> +<tr> + <td>timestamp</td> + <td>long</td> +</tr> +<tr> + <td>timestampType</td> + <td>int</td> +</tr> +</table> + +Right now, the Kafka source has the following Spark's specific options. + +<table class="table"> +<tr><th>Option</th><th>value</th><th>default</th><th>meaning</th></tr> +<tr> + <td>startingOffset</td> + <td>["earliest", "latest"]</td> + <td>"latest"</td> + <td>The start point when a query is started, either "earliest" which is from the earliest offset, + or "latest" which is just from the latest offset. Note: This only applies when a new Streaming q + uery is started, and that resuming will always pick up from where the query left off.</td> +</tr> +<tr> + <td>failOnCorruptMetadata</td> --- End diff -- Is the metadata really corrupt? These actually seem like valid conditions (even if they affect our ability to provide exactly-once guarantees). What about `failOnDataLoss`?
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org