Github user zsxwing commented on a diff in the pull request:

    https://github.com/apache/spark/pull/15102#discussion_r81842503
  
    --- Diff: docs/structured-streaming-kafka-integration.md ---
    @@ -0,0 +1,231 @@
    +---
    +layout: global
    +title: Structured Streaming + Kafka Integration Guide (Kafka broker 
version 0.10.0 or higher)
    +---
    +
    +Structured Streaming integration for Kafka 0.10 to poll data from Kafka. 
It provides simple parallelism,
    +1:1 correspondence between Kafka partitions and Spark partitions. The 
source will cache the Kafka
    +consumer in executors and try the best to schedule the same Kafka topic 
partition to the same executor.
    +
    +### Linking
    +For Scala/Java applications using SBT/Maven project definitions, link your 
application with the following artifact:
    +
    +    groupId = org.apache.spark
    +    artifactId = spark-sql-kafka-0-10_{{site.SCALA_BINARY_VERSION}}
    +    version = {{site.SPARK_VERSION_SHORT}}
    +
    +For Python applications, you need to add this above library and its 
dependencies when deploying your
    +application. See the [Deploying](#deploying) subsection below.
    +
    +### Creating a Kafka Source Stream
    +
    +<div class="codetabs">
    +<div data-lang="scala" markdown="1">
    +
    +    // Subscribe to 1 topic
    +    val ds1 = spark
    +      .readStream
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1")
    +      .load()
    +    ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +      .as[(String, String)]
    +
    +    // Subscribe to multiple topics
    +    val ds2 = spark
    +      .readStream
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1,topic2")
    +      .load()
    +    ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +      .as[(String, String)]
    +
    +    // Subscribe to a pattern
    +    val ds3 = spark
    +      .readStream
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribePattern", "topic.*")
    +      .load()
    +    ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +      .as[(String, String)]
    +
    +</div>
    +<div data-lang="java" markdown="1">
    +
    +    // Subscribe to 1 topic
    +    Dataset<Row> ds1 = spark
    +      .readStream()
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1")
    +      .load()
    +    ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +    // Subscribe to multiple topics
    +    Dataset<Row> ds2 = spark
    +      .readStream()
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1,topic2")
    +      .load()
    +    ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +    // Subscribe to a pattern
    +    Dataset<Row> ds3 = spark
    +      .readStream()
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribePattern", "topic.*")
    +      .load()
    +    ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +</div>
    +<div data-lang="python" markdown="1">
    +
    +    # Subscribe to 1 topic
    +    ds1 = spark
    +      .readStream()
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1")
    +      .load()
    +    ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +    # Subscribe to multiple topics
    +    ds2 = spark
    +      .readStream
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribe", "topic1,topic2")
    +      .load()
    +    ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +    # Subscribe to a pattern
    +    ds3 = spark
    +      .readStream()
    +      .format("kafka")
    +      .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +      .option("subscribePattern", "topic.*")
    +      .load()
    +    ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
    +
    +</div>
    +</div>
    +
    +Each row in the source has the following schema:
    +<table class="table">
    +<tr><th>Column</th><th>Type</th></tr>
    +<tr>
    +  <td>key</td>
    +  <td>binary</td>
    +</tr>
    +<tr>
    +  <td>value</td>
    +  <td>binary</td>
    +</tr>
    +<tr>
    +  <td>topic</td>
    +  <td>string</td>
    +</tr>
    +<tr>
    +  <td>partition</td>
    +  <td>int</td>
    +</tr>
    +<tr>
    +  <td>offset</td>
    +  <td>long</td>
    +</tr>
    +<tr>
    +  <td>timestamp</td>
    +  <td>long</td>
    +</tr>
    +<tr>
    +  <td>timestampType</td>
    +  <td>int</td>
    +</tr>
    +</table>
    +
    +Right now, the Kafka source has the following Spark's specific options.
    +
    +<table class="table">
    +<tr><th>Option</th><th>value</th><th>default</th><th>meaning</th></tr>
    +<tr>
    +  <td>startingOffset</td>
    +  <td>["earliest", "latest"]</td>
    +  <td>"latest"</td>
    +  <td>The start point when a query is started, either "earliest" which is 
from the earliest offset, 
    +  or "latest" which is just from the latest offset. Note: This only 
applies when a new Streaming q
    +  uery is started, and that resuming will always pick up from where the 
query left off.</td>
    +</tr>
    +<tr>
    +  <td>failOnCorruptMetadata</td>
    --- End diff --
    
    There are 3 places calling `reportCorruptMetadata`:
    - We find some new partitions, then try to connect to query their earliest 
offsets but these partitions are gone
      - If these partitions are empty, there is no data lost.
    - Find new partitions but their earliest offsets are not 0.
    - Deleting a topic and create the some topic. This makes the new offset 
less that the old one.
      - There may be no data lost if we have already processed all data in the 
old topic.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to