Github user mengxr commented on a diff in the pull request: https://github.com/apache/spark/pull/2455#discussion_r18423479 --- Diff: core/src/main/scala/org/apache/spark/util/random/RandomSampler.scala --- @@ -53,56 +89,238 @@ trait RandomSampler[T, U] extends Pseudorandom with Cloneable with Serializable * @tparam T item type */ @DeveloperApi -class BernoulliSampler[T](lb: Double, ub: Double, complement: Boolean = false) +class BernoulliPartitionSampler[T](lb: Double, ub: Double, complement: Boolean = false) extends RandomSampler[T, T] { - private[random] var rng: Random = new XORShiftRandom + /** epsilon slop to avoid failure from floating point jitter */ + @transient val eps: Double = RandomSampler.epsArgs + require(lb <= (ub + eps), "Lower bound (lb) must be <= upper bound (ub)") + require(lb >= (0.0 - eps), "Lower bound (lb) must be >= 0.0") + require(ub <= (1.0 + eps), "Upper bound (ub) must be <= 1.0") - def this(ratio: Double) = this(0.0d, ratio) + private val rng: Random = new XORShiftRandom override def setSeed(seed: Long) = rng.setSeed(seed) override def sample(items: Iterator[T]): Iterator[T] = { - items.filter { item => - val x = rng.nextDouble() - (x >= lb && x < ub) ^ complement + if (ub - lb <= 0.0) { + if (complement) items else Iterator.empty + } else { + if (complement) { + items.filter(item => { + val x = rng.nextDouble() + (x < lb) || (x >= ub) + }) + } else { + items.filter(item => { + val x = rng.nextDouble() + (x >= lb) && (x < ub) + }) + } } } /** * Return a sampler that is the complement of the range specified of the current sampler. */ - def cloneComplement(): BernoulliSampler[T] = new BernoulliSampler[T](lb, ub, !complement) + def cloneComplement(): BernoulliPartitionSampler[T] = + new BernoulliPartitionSampler[T](lb, ub, !complement) + + override def clone = new BernoulliPartitionSampler[T](lb, ub, complement) +} - override def clone = new BernoulliSampler[T](lb, ub, complement) + +/** + * :: DeveloperApi :: + * A sampler based on Bernoulli trials. + * + * @param fraction the sampling fraction, aka Bernoulli sampling probability + * @tparam T item type + */ +@DeveloperApi +class BernoulliSampler[T: ClassTag](fraction: Double) extends RandomSampler[T, T] { + + /** epsilon slop to avoid failure from floating point jitter */ + @transient val eps: Double = RandomSampler.epsArgs + require(fraction >= (0.0 - eps) && fraction <= (1.0 + eps), + "Sampling fraction must be on interval [0, 1]") + + private val rng: Random = RandomSampler.rngDefault + + override def setSeed(seed: Long) = rng.setSeed(seed) + + override def sample(items: Iterator[T]): Iterator[T] = { + if (fraction <= 0.0) { + Iterator.empty + } else if (fraction >= 1.0) { + items + } else if (fraction <= RandomSampler.gsmDefault) { + new GapSamplingIterator(items, fraction, rng, RandomSampler.epsDefault) + } else { + items.filter(_ => (rng.nextDouble() <= fraction)) + } + } + + override def clone = new BernoulliSampler[T](fraction) } + /** * :: DeveloperApi :: - * A sampler based on values drawn from Poisson distribution. + * A sampler for sampling with replacement, based on values drawn from Poisson distribution. * - * @param mean Poisson mean + * @param fraction the sampling fraction (with replacement) * @tparam T item type */ @DeveloperApi -class PoissonSampler[T](mean: Double) extends RandomSampler[T, T] { +class PoissonSampler[T: ClassTag](fraction: Double) extends RandomSampler[T, T] { - private[random] var rng = new Poisson(mean, new DRand) + /** epsilon slop to avoid failure from floating point jitter */ + @transient val eps = RandomSampler.epsArgs + require(fraction >= (0.0 - eps), "Sampling fraction must be >= 0") + + private var curseed: Long = System.nanoTime + private var rng = new Poisson(fraction, new DRand(curseed.toInt)) override def setSeed(seed: Long) { - rng = new Poisson(mean, new DRand(seed.toInt)) + curseed = seed + rng = new Poisson(fraction, new DRand(seed.toInt)) } override def sample(items: Iterator[T]): Iterator[T] = { - items.flatMap { item => - val count = rng.nextInt() - if (count == 0) { - Iterator.empty - } else { - Iterator.fill(count)(item) - } + if (fraction <= 0.0) { + Iterator.empty + } else if (fraction <= RandomSampler.gsmDefault) { + val trng = RandomSampler.rngDefault + trng.setSeed(curseed) + new GapSamplingReplacementIterator(items, fraction, trng, RandomSampler.epsDefault) + } else { + items.flatMap(item => { + val count = rng.nextInt() + if (count == 0) Iterator.empty else Iterator.fill(count)(item) + }) + } + } + + override def clone = new PoissonSampler[T](fraction) +} + + +@DeveloperApi +private [spark] +class GapSamplingIterator[T: ClassTag](var data: Iterator[T], f: Double, + rng: Random = RandomSampler.rngDefault, + epsilon: Double = RandomSampler.epsDefault + ) extends Iterator[T] { + + require(f > 0.0 && f < 1.0, "Sampling fraction (f) must reside on open interval (0, 1)") + require(epsilon > 0.0, "epsilon must be > 0") + + /** implement efficient linear-sequence drop until scala includes fix for jira SI-8835 */ + private val dd: Int => Unit = { + val arrayClass = Array.empty[T].iterator.getClass + val arrayBufferClass = ArrayBuffer.empty[T].iterator.getClass + data.getClass match { + case `arrayClass` => ((n: Int) => { data = data.drop(n) }) + case `arrayBufferClass` => ((n: Int) => { data = data.drop(n) }) + case _ => ((n: Int) => { + var j = 0 + while (j < n && data.hasNext) { + data.next + j += 1 + } + }) + } + } + + override def hasNext: Boolean = data.hasNext + + override def next: T = { + val r = data.next + advance + r + } + + private val lnq = Math.log1p(-f) + /** skip elements that won't be sampled, according to geometric dist P(k) = (f)(1-f)^k */ + private def advance { + val u = Math.max(rng.nextDouble(), epsilon) + val k = (Math.log(u) / lnq).toInt + dd(k) + } + + /** advance to first sample as part of object construction */ + advance +} + +@DeveloperApi --- End diff -- remove `@DeveloperApi`
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org