Github user cloud-fan commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19943#discussion_r159226605
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/orc/OrcColumnarBatchReader.scala
 ---
    @@ -0,0 +1,432 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.datasources.orc
    +
    +import org.apache.hadoop.mapreduce.{InputSplit, RecordReader, 
TaskAttemptContext}
    +import org.apache.hadoop.mapreduce.lib.input.FileSplit
    +import org.apache.orc._
    +import org.apache.orc.mapred.OrcInputFormat
    +import org.apache.orc.storage.ql.exec.vector._
    +import org.apache.orc.storage.serde2.io.HiveDecimalWritable
    +
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.memory.MemoryMode
    +import org.apache.spark.sql.catalyst.InternalRow
    +import org.apache.spark.sql.execution.vectorized._
    +import org.apache.spark.sql.types._
    +
    +
    +/**
    + * To support vectorization in WholeStageCodeGen, this reader returns 
ColumnarBatch.
    + */
    +private[orc] class OrcColumnarBatchReader extends RecordReader[Void, 
ColumnarBatch] with Logging {
    +  import OrcColumnarBatchReader._
    +
    +  /**
    +   * ORC File Reader.
    +   */
    +  private var reader: Reader = _
    +
    +  /**
    +   * Vectorized Row Batch.
    +   */
    +  private var batch: VectorizedRowBatch = _
    +
    +  /**
    +   * Requested Column IDs.
    +   */
    +  private var requestedColIds: Array[Int] = _
    +
    +  /**
    +   * Record reader from row batch.
    +   */
    +  private var rows: org.apache.orc.RecordReader = _
    +
    +  /**
    +   * Required Schema.
    +   */
    +  private var requiredSchema: StructType = _
    +
    +  /**
    +   * ColumnarBatch for vectorized execution by whole-stage codegen.
    +   */
    +  private var columnarBatch: ColumnarBatch = _
    +
    +  /**
    +   * Writable columnVectors of ColumnarBatch.
    +   */
    +  private var columnVectors: Seq[WritableColumnVector] = _
    +
    +  /**
    +   * The number of rows read and considered to be returned.
    +   */
    +  private var rowsReturned: Long = 0L
    +
    +  /**
    +   * Total number of rows.
    +   */
    +  private var totalRowCount: Long = 0L
    +
    +  override def getCurrentKey: Void = null
    +
    +  override def getCurrentValue: ColumnarBatch = columnarBatch
    +
    +  override def getProgress: Float = rowsReturned.toFloat / totalRowCount
    +
    +  override def nextKeyValue(): Boolean = nextBatch()
    +
    +  override def close(): Unit = {
    +    if (columnarBatch != null) {
    +      columnarBatch.close()
    +      columnarBatch = null
    +    }
    +    if (rows != null) {
    +      rows.close()
    +      rows = null
    +    }
    +  }
    +
    +  /**
    +   * Initialize ORC file reader and batch record reader.
    +   * Please note that `setRequiredSchema` is needed to be called after 
this.
    +   */
    +  override def initialize(inputSplit: InputSplit, taskAttemptContext: 
TaskAttemptContext): Unit = {
    +    val fileSplit = inputSplit.asInstanceOf[FileSplit]
    +    val conf = taskAttemptContext.getConfiguration
    +    reader = OrcFile.createReader(
    +      fileSplit.getPath,
    +      OrcFile.readerOptions(conf)
    +        .maxLength(OrcConf.MAX_FILE_LENGTH.getLong(conf))
    +        .filesystem(fileSplit.getPath.getFileSystem(conf)))
    +
    +    val options = OrcInputFormat.buildOptions(conf, reader, 
fileSplit.getStart, fileSplit.getLength)
    +    rows = reader.rows(options)
    +  }
    +
    +  /**
    +   * Set required schema and partition information.
    +   * With this information, this creates ColumnarBatch with the full 
schema.
    +   */
    +  def setRequiredSchema(
    +      orcSchema: TypeDescription,
    +      requestedColIds: Array[Int],
    +      resultSchema: StructType,
    +      requiredSchema: StructType,
    +      partitionValues: InternalRow): Unit = {
    +    batch = orcSchema.createRowBatch(DEFAULT_SIZE)
    +    assert(!batch.selectedInUse)
    +    totalRowCount = reader.getNumberOfRows
    +    logDebug(s"totalRowCount = $totalRowCount")
    +
    +    this.requiredSchema = requiredSchema
    +    this.requestedColIds = requestedColIds
    +
    +    val memMode = DEFAULT_MEMORY_MODE
    +    val capacity = ColumnarBatch.DEFAULT_BATCH_SIZE
    +    if (memMode == MemoryMode.OFF_HEAP) {
    +      columnVectors = OffHeapColumnVector.allocateColumns(capacity, 
resultSchema)
    +    } else {
    +      columnVectors = OnHeapColumnVector.allocateColumns(capacity, 
resultSchema)
    +    }
    +    columnarBatch = new ColumnarBatch(resultSchema, columnVectors.toArray, 
capacity)
    +
    +    if (partitionValues.numFields > 0) {
    +      val partitionIdx = requiredSchema.fields.length
    +      for (i <- 0 until partitionValues.numFields) {
    +        ColumnVectorUtils.populate(columnVectors(i + partitionIdx), 
partitionValues, i)
    +        columnVectors(i + partitionIdx).setIsConstant()
    +      }
    +    }
    +  }
    +
    +  /**
    +   * Return true if there exists more data in the next batch. If exists, 
prepare the next batch
    +   * by copying from ORC VectorizedRowBatch columns to Spark ColumnarBatch 
columns.
    +   */
    +  private def nextBatch(): Boolean = {
    +    if (rowsReturned >= totalRowCount) {
    +      return false
    +    }
    +
    +    rows.nextBatch(batch)
    +    val batchSize = batch.size
    +    if (batchSize == 0) {
    +      return false
    +    }
    +    rowsReturned += batchSize
    +    columnarBatch.reset()
    +    columnarBatch.setNumRows(batchSize)
    +
    +    var i = 0
    +    while (i < requiredSchema.length) {
    +      val field = requiredSchema(i)
    +      val toColumn = columnVectors(i)
    +
    +      if (requestedColIds(i) < 0) {
    +        toColumn.appendNulls(batchSize)
    +      } else {
    +        val fromColumn = batch.cols(requestedColIds(i))
    +
    +        if (fromColumn.isRepeating) {
    +          if (fromColumn.isNull(0)) {
    +            toColumn.appendNulls(batchSize)
    +          } else {
    +            field.dataType match {
    +              case BooleanType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0) == 1
    +                toColumn.appendBooleans(batchSize, data)
    +
    +              case ByteType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0).toByte
    +                toColumn.appendBytes(batchSize, data)
    +              case ShortType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0).toShort
    +                toColumn.appendShorts(batchSize, data)
    +              case IntegerType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0).toInt
    +                toColumn.appendInts(batchSize, data)
    +              case LongType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0)
    +                toColumn.appendLongs(batchSize, data)
    +
    +              case DateType =>
    +                val data = 
fromColumn.asInstanceOf[LongColumnVector].vector(0).toInt
    +                toColumn.appendInts(batchSize, data)
    +
    +              case TimestampType =>
    +                val data = fromColumn.asInstanceOf[TimestampColumnVector]
    +                toColumn.appendLongs(batchSize, 
fromTimestampColumnVector(data, 0))
    +
    +              case FloatType =>
    +                val data = 
fromColumn.asInstanceOf[DoubleColumnVector].vector(0).toFloat
    +                toColumn.appendFloats(batchSize, data)
    +              case DoubleType =>
    +                val data = 
fromColumn.asInstanceOf[DoubleColumnVector].vector(0)
    +                toColumn.appendDoubles(batchSize, data)
    +
    +              case StringType =>
    +                val data = fromColumn.asInstanceOf[BytesColumnVector]
    +                var index = 0
    +                while (index < batchSize) {
    +                  toColumn.appendByteArray(data.vector(0), data.start(0), 
data.length(0))
    +                  index += 1
    +                }
    +              case BinaryType =>
    +                val data = fromColumn.asInstanceOf[BytesColumnVector]
    +                var index = 0
    +                while (index < batchSize) {
    +                  toColumn.appendByteArray(data.vector(0), data.start(0), 
data.length(0))
    +                  index += 1
    +                }
    +
    +              case DecimalType.Fixed(precision, scale) =>
    +                val d = 
fromColumn.asInstanceOf[DecimalColumnVector].vector(0)
    +                appendDecimalWritable(toColumn, precision, scale, d)
    +
    +              case dt =>
    +                throw new UnsupportedOperationException(s"Unsupported Data 
Type: $dt")
    +            }
    +          }
    +        } else if (!field.nullable || fromColumn.noNulls) {
    +          field.dataType match {
    +            case BooleanType =>
    +              val data = fromColumn.asInstanceOf[LongColumnVector].vector
    +              var index = 0
    +              while (index < batchSize) {
    --- End diff --
    
    anyone knows why ORC does this? cc @mmccline 


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to