Github user dongjoon-hyun commented on a diff in the pull request: https://github.com/apache/spark/pull/19943#discussion_r160017493 --- Diff: sql/hive/src/test/scala/org/apache/spark/sql/hive/orc/OrcReadBenchmark.scala --- @@ -0,0 +1,435 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.hive.orc + +import java.io.File + +import scala.util.{Random, Try} + +import org.apache.spark.SparkConf +import org.apache.spark.sql.{DataFrame, SparkSession} +import org.apache.spark.sql.internal.SQLConf +import org.apache.spark.sql.types._ +import org.apache.spark.util.{Benchmark, Utils} + + +/** + * Benchmark to measure ORC read performance. + * + * This is in `sql/hive` module in order to compare `sql/core` and `sql/hive` ORC data sources. + */ +// scalastyle:off line.size.limit +object OrcReadBenchmark { + val conf = new SparkConf() + conf.set("orc.compression", "snappy") + + private val spark = SparkSession.builder() + .master("local[1]") + .appName("OrcReadBenchmark") + .config(conf) + .getOrCreate() + + // Set default configs. Individual cases will change them if necessary. + spark.conf.set(SQLConf.ORC_FILTER_PUSHDOWN_ENABLED.key, "true") + + def withTempPath(f: File => Unit): Unit = { + val path = Utils.createTempDir() + path.delete() + try f(path) finally Utils.deleteRecursively(path) + } + + def withTempTable(tableNames: String*)(f: => Unit): Unit = { + try f finally tableNames.foreach(spark.catalog.dropTempView) + } + + def withSQLConf(pairs: (String, String)*)(f: => Unit): Unit = { + val (keys, values) = pairs.unzip + val currentValues = keys.map(key => Try(spark.conf.get(key)).toOption) + (keys, values).zipped.foreach(spark.conf.set) + try f finally { + keys.zip(currentValues).foreach { + case (key, Some(value)) => spark.conf.set(key, value) + case (key, None) => spark.conf.unset(key) + } + } + } + + private val NATIVE_ORC_FORMAT = "org.apache.spark.sql.execution.datasources.orc.OrcFileFormat" + private val HIVE_ORC_FORMAT = "org.apache.spark.sql.hive.orc.OrcFileFormat" + + private def prepareTable(dir: File, df: DataFrame, partition: Option[String] = None): Unit = { + val dirORC = dir.getCanonicalPath + + if (partition.isDefined) { + df.write.partitionBy(partition.get).orc(dirORC) + } else { + df.write.orc(dirORC) + } + + spark.read.format(NATIVE_ORC_FORMAT).load(dirORC).createOrReplaceTempView("nativeOrcTable") + spark.read.format(HIVE_ORC_FORMAT).load(dirORC).createOrReplaceTempView("hiveOrcTable") + } + + def numericScanBenchmark(values: Int, dataType: DataType): Unit = { + val sqlBenchmark = new Benchmark(s"SQL Single ${dataType.sql} Column Scan", values) + + withTempPath { dir => + withTempTable("t1", "nativeOrcTable", "hiveOrcTable") { + import spark.implicits._ + spark.range(values).map(_ => Random.nextLong).createOrReplaceTempView("t1") + + prepareTable(dir, spark.sql(s"SELECT CAST(value as ${dataType.sql}) id FROM t1")) + + sqlBenchmark.addCase("Native ORC Vectorized") { _ => + spark.sql("SELECT sum(id) FROM nativeOrcTable").collect() + } + + sqlBenchmark.addCase("Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(id) FROM nativeOrcTable").collect() + } + } + + sqlBenchmark.addCase("Hive built-in ORC") { _ => + spark.sql("SELECT sum(id) FROM hiveOrcTable").collect() + } + + /* + Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1 + Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz + + SQL Single TINYINT Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 156 / 163 100.7 9.9 1.0X + Native ORC MR 1222 / 1236 12.9 77.7 0.1X + Hive built-in ORC 1572 / 1625 10.0 100.0 0.1X + + SQL Single SMALLINT Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 215 / 225 73.1 13.7 1.0X + Native ORC MR 1337 / 1458 11.8 85.0 0.2X + Hive built-in ORC 1696 / 1707 9.3 107.8 0.1X + + SQL Single INT Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 285 / 294 55.2 18.1 1.0X + Native ORC MR 1397 / 1419 11.3 88.8 0.2X + Hive built-in ORC 2086 / 2143 7.5 132.6 0.1X + + SQL Single BIGINT Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 341 / 350 46.1 21.7 1.0X + Native ORC MR 1461 / 1492 10.8 92.9 0.2X + Hive built-in ORC 2002 / 2095 7.9 127.3 0.2X + + SQL Single FLOAT Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 347 / 356 45.3 22.1 1.0X + Native ORC MR 1524 / 1553 10.3 96.9 0.2X + Hive built-in ORC 2393 / 2404 6.6 152.1 0.1X + + SQL Single DOUBLE Column Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 403 / 411 39.0 25.6 1.0X + Native ORC MR 1517 / 1529 10.4 96.5 0.3X + Hive built-in ORC 2054 / 2134 7.7 130.6 0.2X + */ + sqlBenchmark.run() + } + } + } + + def intStringScanBenchmark(values: Int): Unit = { + val benchmark = new Benchmark("Int and String Scan", values) + + withTempPath { dir => + withTempTable("t1", "nativeOrcTable", "hiveOrcTable") { + import spark.implicits._ + spark.range(values).map(_ => Random.nextLong).createOrReplaceTempView("t1") + + prepareTable( + dir, + spark.sql("SELECT CAST(value AS INT) AS c1, CAST(value as STRING) AS c2 FROM t1")) + + benchmark.addCase("Native ORC Vectorized") { _ => + spark.sql("SELECT sum(c1), sum(length(c2)) FROM nativeOrcTable").collect() + } + + benchmark.addCase("Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(c1), sum(length(c2)) FROM nativeOrcTable").collect() + } + } + + benchmark.addCase("Hive built-in ORC") { _ => + spark.sql("SELECT sum(c1), sum(length(c2)) FROM hiveOrcTable").collect() + } + + /* + Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1 + Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz + + Int and String Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 1382 / 1400 7.6 131.8 1.0X + Native ORC MR 2689 / 2765 3.9 256.4 0.5X + Hive built-in ORC 3889 / 3894 2.7 370.9 0.4X + */ + benchmark.run() + } + } + } + + def partitionTableScanBenchmark(values: Int): Unit = { + val benchmark = new Benchmark("Partitioned Table", values) + + withTempPath { dir => + withTempTable("t1", "nativeOrcTable", "hiveOrcTable") { + import spark.implicits._ + spark.range(values).map(_ => Random.nextLong).createOrReplaceTempView("t1") + + prepareTable(dir, spark.sql("SELECT value % 2 AS p, value AS id FROM t1"), Some("p")) + + benchmark.addCase("Read data column - Native ORC Vectorized") { _ => + spark.sql("SELECT sum(id) FROM nativeOrcTable").collect() + } + + benchmark.addCase("Read data column - Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(id) FROM nativeOrcTable").collect() + } + } + + benchmark.addCase("Read data column - Hive built-in ORC") { _ => + spark.sql("SELECT sum(id) FROM hiveOrcTable").collect() + } + + benchmark.addCase("Read partition column - Native ORC Vectorized") { _ => + spark.sql("SELECT sum(p) FROM nativeOrcTable").collect() + } + + benchmark.addCase("Read partition column - Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(p) FROM nativeOrcTable").collect() + } + } + + benchmark.addCase("Read partition column - Hive built-in ORC") { _ => + spark.sql("SELECT sum(p) FROM hiveOrcTable").collect() + } + + benchmark.addCase("Read both columns - Native ORC Vectorized") { _ => + spark.sql("SELECT sum(p), sum(id) FROM nativeOrcTable").collect() + } + + benchmark.addCase("Read both columns - Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(p), sum(id) FROM nativeOrcTable").collect() + } + } + + benchmark.addCase("Read both columns - Hive built-in ORC") { _ => + spark.sql("SELECT sum(p), sum(id) FROM hiveOrcTable").collect() + } + + /* + Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1 + Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz + + Partitioned Table: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Read data column - Native ORC Vectorized 347 / 350 45.3 22.1 1.0X + Read data column - Native ORC MR 1611 / 1613 9.8 102.4 0.2X + Read data column - Hive built-in ORC 2082 / 2091 7.6 132.4 0.2X + Read partition column - Native ORC Vectorized 55 / 57 286.5 3.5 6.3X + Read partition column - Native ORC MR 1062 / 1063 14.8 67.5 0.3X + Read partition column - Hive built-in ORC 1334 / 1334 11.8 84.8 0.3X + Read both columns - Native ORC Vectorized 380 / 388 41.3 24.2 0.9X + Read both columns - Native ORC MR 1654 / 1672 9.5 105.2 0.2X + Read both columns - Hive built-in ORC 2209 / 2209 7.1 140.5 0.2X + */ + benchmark.run() + } + } + } + + def stringDictionaryScanBenchmark(values: Int): Unit = { + val benchmark = new Benchmark("String Dictionary", values) + + withTempPath { dir => + withTempTable("t1", "nativeOrcTable", "hiveOrcTable") { + spark.range(values).createOrReplaceTempView("t1") + + prepareTable(dir, spark.sql("SELECT CAST((id % 200) + 10000 as STRING) AS c1 FROM t1")) + + benchmark.addCase("Native ORC Vectorized") { _ => + spark.sql("SELECT sum(length(c1)) FROM nativeOrcTable").collect() + } + + benchmark.addCase("Native ORC MR") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT sum(length(c1)) FROM nativeOrcTable").collect() + } + } + + benchmark.addCase("Hive built-in ORC") { _ => + spark.sql("SELECT sum(length(c1)) FROM hiveOrcTable").collect() + } + + /* + Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1 + Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz + + String Dictionary: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized 406 / 414 25.8 38.7 1.0X + Native ORC MR 1372 / 1381 7.6 130.8 0.3X + Hive built-in ORC 2016 / 2036 5.2 192.2 0.2X + */ + benchmark.run() + } + } + } + + def stringWithNullsScanBenchmark(values: Int, fractionOfNulls: Double): Unit = { + withTempPath { dir => + withTempTable("t1", "nativeOrcTable", "hiveOrcTable") { + spark.range(values).createOrReplaceTempView("t1") + + prepareTable( + dir, + spark.sql( + s"SELECT IF(RAND(1) < $fractionOfNulls, NULL, CAST(id as STRING)) AS c1, " + + s"IF(RAND(2) < $fractionOfNulls, NULL, CAST(id as STRING)) AS c2 FROM t1")) + + val benchmark = new Benchmark("String with Nulls Scan", values) + + benchmark.addCase(s"Native ORC Vectorized ($fractionOfNulls%)") { _ => + spark.sql("SELECT SUM(LENGTH(c2)) FROM nativeOrcTable " + + "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect() + } + + benchmark.addCase(s"Native ORC MR ($fractionOfNulls%)") { _ => + withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> "false") { + spark.sql("SELECT SUM(LENGTH(c2)) FROM nativeOrcTable " + + "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect() + } + } + + benchmark.addCase(s"Hive built-in ORC ($fractionOfNulls%)") { _ => + spark.sql("SELECT SUM(LENGTH(c2)) FROM hiveOrcTable " + + "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect() + } + + /* + Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1 + Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz + + String with Nulls Scan: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative + ------------------------------------------------------------------------------------------------ + Native ORC Vectorized (0.0%) 1122 / 1129 9.3 107.0 1.0X + Native ORC MR (0.0%) 2551 / 2619 4.1 243.3 0.4X --- End diff -- Yep.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org