Github user dongjoon-hyun commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19943#discussion_r160017493
  
    --- Diff: 
sql/hive/src/test/scala/org/apache/spark/sql/hive/orc/OrcReadBenchmark.scala ---
    @@ -0,0 +1,435 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.hive.orc
    +
    +import java.io.File
    +
    +import scala.util.{Random, Try}
    +
    +import org.apache.spark.SparkConf
    +import org.apache.spark.sql.{DataFrame, SparkSession}
    +import org.apache.spark.sql.internal.SQLConf
    +import org.apache.spark.sql.types._
    +import org.apache.spark.util.{Benchmark, Utils}
    +
    +
    +/**
    + * Benchmark to measure ORC read performance.
    + *
    + * This is in `sql/hive` module in order to compare `sql/core` and 
`sql/hive` ORC data sources.
    + */
    +// scalastyle:off line.size.limit
    +object OrcReadBenchmark {
    +  val conf = new SparkConf()
    +  conf.set("orc.compression", "snappy")
    +
    +  private val spark = SparkSession.builder()
    +    .master("local[1]")
    +    .appName("OrcReadBenchmark")
    +    .config(conf)
    +    .getOrCreate()
    +
    +  // Set default configs. Individual cases will change them if necessary.
    +  spark.conf.set(SQLConf.ORC_FILTER_PUSHDOWN_ENABLED.key, "true")
    +
    +  def withTempPath(f: File => Unit): Unit = {
    +    val path = Utils.createTempDir()
    +    path.delete()
    +    try f(path) finally Utils.deleteRecursively(path)
    +  }
    +
    +  def withTempTable(tableNames: String*)(f: => Unit): Unit = {
    +    try f finally tableNames.foreach(spark.catalog.dropTempView)
    +  }
    +
    +  def withSQLConf(pairs: (String, String)*)(f: => Unit): Unit = {
    +    val (keys, values) = pairs.unzip
    +    val currentValues = keys.map(key => Try(spark.conf.get(key)).toOption)
    +    (keys, values).zipped.foreach(spark.conf.set)
    +    try f finally {
    +      keys.zip(currentValues).foreach {
    +        case (key, Some(value)) => spark.conf.set(key, value)
    +        case (key, None) => spark.conf.unset(key)
    +      }
    +    }
    +  }
    +
    +  private val NATIVE_ORC_FORMAT = 
"org.apache.spark.sql.execution.datasources.orc.OrcFileFormat"
    +  private val HIVE_ORC_FORMAT = 
"org.apache.spark.sql.hive.orc.OrcFileFormat"
    +
    +  private def prepareTable(dir: File, df: DataFrame, partition: 
Option[String] = None): Unit = {
    +    val dirORC = dir.getCanonicalPath
    +
    +    if (partition.isDefined) {
    +      df.write.partitionBy(partition.get).orc(dirORC)
    +    } else {
    +      df.write.orc(dirORC)
    +    }
    +
    +    
spark.read.format(NATIVE_ORC_FORMAT).load(dirORC).createOrReplaceTempView("nativeOrcTable")
    +    
spark.read.format(HIVE_ORC_FORMAT).load(dirORC).createOrReplaceTempView("hiveOrcTable")
    +  }
    +
    +  def numericScanBenchmark(values: Int, dataType: DataType): Unit = {
    +    val sqlBenchmark = new Benchmark(s"SQL Single ${dataType.sql} Column 
Scan", values)
    +
    +    withTempPath { dir =>
    +      withTempTable("t1", "nativeOrcTable", "hiveOrcTable") {
    +        import spark.implicits._
    +        spark.range(values).map(_ => 
Random.nextLong).createOrReplaceTempView("t1")
    +
    +        prepareTable(dir, spark.sql(s"SELECT CAST(value as 
${dataType.sql}) id FROM t1"))
    +
    +        sqlBenchmark.addCase("Native ORC Vectorized") { _ =>
    +          spark.sql("SELECT sum(id) FROM nativeOrcTable").collect()
    +        }
    +
    +        sqlBenchmark.addCase("Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(id) FROM nativeOrcTable").collect()
    +          }
    +        }
    +
    +        sqlBenchmark.addCase("Hive built-in ORC") { _ =>
    +          spark.sql("SELECT sum(id) FROM hiveOrcTable").collect()
    +        }
    +
    +        /*
    +        Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1
    +        Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
    +
    +        SQL Single TINYINT Column Scan:          Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          156 /  163        
100.7           9.9       1.0X
    +        Native ORC MR                                 1222 / 1236         
12.9          77.7       0.1X
    +        Hive built-in ORC                             1572 / 1625         
10.0         100.0       0.1X
    +
    +        SQL Single SMALLINT Column Scan:         Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          215 /  225         
73.1          13.7       1.0X
    +        Native ORC MR                                 1337 / 1458         
11.8          85.0       0.2X
    +        Hive built-in ORC                             1696 / 1707          
9.3         107.8       0.1X
    +
    +        SQL Single INT Column Scan:              Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          285 /  294         
55.2          18.1       1.0X
    +        Native ORC MR                                 1397 / 1419         
11.3          88.8       0.2X
    +        Hive built-in ORC                             2086 / 2143          
7.5         132.6       0.1X
    +
    +        SQL Single BIGINT Column Scan:           Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          341 /  350         
46.1          21.7       1.0X
    +        Native ORC MR                                 1461 / 1492         
10.8          92.9       0.2X
    +        Hive built-in ORC                             2002 / 2095          
7.9         127.3       0.2X
    +
    +        SQL Single FLOAT Column Scan:            Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          347 /  356         
45.3          22.1       1.0X
    +        Native ORC MR                                 1524 / 1553         
10.3          96.9       0.2X
    +        Hive built-in ORC                             2393 / 2404          
6.6         152.1       0.1X
    +
    +        SQL Single DOUBLE Column Scan:           Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          403 /  411         
39.0          25.6       1.0X
    +        Native ORC MR                                 1517 / 1529         
10.4          96.5       0.3X
    +        Hive built-in ORC                             2054 / 2134          
7.7         130.6       0.2X
    +        */
    +        sqlBenchmark.run()
    +      }
    +    }
    +  }
    +
    +  def intStringScanBenchmark(values: Int): Unit = {
    +    val benchmark = new Benchmark("Int and String Scan", values)
    +
    +    withTempPath { dir =>
    +      withTempTable("t1", "nativeOrcTable", "hiveOrcTable") {
    +        import spark.implicits._
    +        spark.range(values).map(_ => 
Random.nextLong).createOrReplaceTempView("t1")
    +
    +        prepareTable(
    +          dir,
    +          spark.sql("SELECT CAST(value AS INT) AS c1, CAST(value as 
STRING) AS c2 FROM t1"))
    +
    +        benchmark.addCase("Native ORC Vectorized") { _ =>
    +          spark.sql("SELECT sum(c1), sum(length(c2)) FROM 
nativeOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(c1), sum(length(c2)) FROM 
nativeOrcTable").collect()
    +          }
    +        }
    +
    +        benchmark.addCase("Hive built-in ORC") { _ =>
    +          spark.sql("SELECT sum(c1), sum(length(c2)) FROM 
hiveOrcTable").collect()
    +        }
    +
    +        /*
    +        Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1
    +        Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
    +
    +        Int and String Scan:                     Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                         1382 / 1400          
7.6         131.8       1.0X
    +        Native ORC MR                                 2689 / 2765          
3.9         256.4       0.5X
    +        Hive built-in ORC                             3889 / 3894          
2.7         370.9       0.4X
    +        */
    +        benchmark.run()
    +      }
    +    }
    +  }
    +
    +  def partitionTableScanBenchmark(values: Int): Unit = {
    +    val benchmark = new Benchmark("Partitioned Table", values)
    +
    +    withTempPath { dir =>
    +      withTempTable("t1", "nativeOrcTable", "hiveOrcTable") {
    +        import spark.implicits._
    +        spark.range(values).map(_ => 
Random.nextLong).createOrReplaceTempView("t1")
    +
    +        prepareTable(dir, spark.sql("SELECT value % 2 AS p, value AS id 
FROM t1"), Some("p"))
    +
    +        benchmark.addCase("Read data column - Native ORC Vectorized") { _ 
=>
    +          spark.sql("SELECT sum(id) FROM nativeOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Read data column - Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(id) FROM nativeOrcTable").collect()
    +          }
    +        }
    +
    +        benchmark.addCase("Read data column - Hive built-in ORC") { _ =>
    +          spark.sql("SELECT sum(id) FROM hiveOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Read partition column - Native ORC Vectorized") 
{ _ =>
    +          spark.sql("SELECT sum(p) FROM nativeOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Read partition column - Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(p) FROM nativeOrcTable").collect()
    +          }
    +        }
    +
    +        benchmark.addCase("Read partition column - Hive built-in ORC") { _ 
=>
    +          spark.sql("SELECT sum(p) FROM hiveOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Read both columns - Native ORC Vectorized") { _ 
=>
    +          spark.sql("SELECT sum(p), sum(id) FROM nativeOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Read both columns - Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(p), sum(id) FROM 
nativeOrcTable").collect()
    +          }
    +        }
    +
    +        benchmark.addCase("Read both columns - Hive built-in ORC") { _ =>
    +          spark.sql("SELECT sum(p), sum(id) FROM hiveOrcTable").collect()
    +        }
    +
    +        /*
    +        Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1
    +        Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
    +
    +        Partitioned Table:                       Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Read data column - Native ORC Vectorized       347 /  350         
45.3          22.1       1.0X
    +        Read data column - Native ORC MR              1611 / 1613          
9.8         102.4       0.2X
    +        Read data column - Hive built-in ORC          2082 / 2091          
7.6         132.4       0.2X
    +        Read partition column - Native ORC Vectorized   55 /   57        
286.5           3.5       6.3X
    +        Read partition column - Native ORC MR         1062 / 1063         
14.8          67.5       0.3X
    +        Read partition column - Hive built-in ORC     1334 / 1334         
11.8          84.8       0.3X
    +        Read both columns - Native ORC Vectorized      380 /  388         
41.3          24.2       0.9X
    +        Read both columns - Native ORC MR             1654 / 1672          
9.5         105.2       0.2X
    +        Read both columns - Hive built-in ORC         2209 / 2209          
7.1         140.5       0.2X
    +        */
    +        benchmark.run()
    +      }
    +    }
    +  }
    +
    +  def stringDictionaryScanBenchmark(values: Int): Unit = {
    +    val benchmark = new Benchmark("String Dictionary", values)
    +
    +    withTempPath { dir =>
    +      withTempTable("t1", "nativeOrcTable", "hiveOrcTable") {
    +        spark.range(values).createOrReplaceTempView("t1")
    +
    +        prepareTable(dir, spark.sql("SELECT CAST((id % 200) + 10000 as 
STRING) AS c1 FROM t1"))
    +
    +        benchmark.addCase("Native ORC Vectorized") { _ =>
    +          spark.sql("SELECT sum(length(c1)) FROM nativeOrcTable").collect()
    +        }
    +
    +        benchmark.addCase("Native ORC MR") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT sum(length(c1)) FROM 
nativeOrcTable").collect()
    +          }
    +        }
    +
    +        benchmark.addCase("Hive built-in ORC") { _ =>
    +          spark.sql("SELECT sum(length(c1)) FROM hiveOrcTable").collect()
    +        }
    +
    +        /*
    +        Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1
    +        Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
    +
    +        String Dictionary:                       Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized                          406 /  414         
25.8          38.7       1.0X
    +        Native ORC MR                                 1372 / 1381          
7.6         130.8       0.3X
    +        Hive built-in ORC                             2016 / 2036          
5.2         192.2       0.2X
    +        */
    +        benchmark.run()
    +      }
    +    }
    +  }
    +
    +  def stringWithNullsScanBenchmark(values: Int, fractionOfNulls: Double): 
Unit = {
    +    withTempPath { dir =>
    +      withTempTable("t1", "nativeOrcTable", "hiveOrcTable") {
    +        spark.range(values).createOrReplaceTempView("t1")
    +
    +        prepareTable(
    +          dir,
    +          spark.sql(
    +            s"SELECT IF(RAND(1) < $fractionOfNulls, NULL, CAST(id as 
STRING)) AS c1, " +
    +            s"IF(RAND(2) < $fractionOfNulls, NULL, CAST(id as STRING)) AS 
c2 FROM t1"))
    +
    +        val benchmark = new Benchmark("String with Nulls Scan", values)
    +
    +        benchmark.addCase(s"Native ORC Vectorized ($fractionOfNulls%)") { 
_ =>
    +          spark.sql("SELECT SUM(LENGTH(c2)) FROM nativeOrcTable " +
    +            "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect()
    +        }
    +
    +        benchmark.addCase(s"Native ORC MR ($fractionOfNulls%)") { _ =>
    +          withSQLConf(SQLConf.ORC_VECTORIZED_READER_ENABLED.key -> 
"false") {
    +            spark.sql("SELECT SUM(LENGTH(c2)) FROM nativeOrcTable " +
    +              "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect()
    +          }
    +        }
    +
    +        benchmark.addCase(s"Hive built-in ORC ($fractionOfNulls%)") { _ =>
    +          spark.sql("SELECT SUM(LENGTH(c2)) FROM hiveOrcTable " +
    +            "WHERE c1 IS NOT NULL AND c2 IS NOT NULL").collect()
    +        }
    +
    +        /*
    +        Java HotSpot(TM) 64-Bit Server VM 1.8.0_152-b16 on Mac OS X 10.13.1
    +        Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
    +
    +        String with Nulls Scan:                  Best/Avg Time(ms)    
Rate(M/s)   Per Row(ns)   Relative
    +        
------------------------------------------------------------------------------------------------
    +        Native ORC Vectorized (0.0%)                  1122 / 1129          
9.3         107.0       1.0X
    +        Native ORC MR (0.0%)                          2551 / 2619          
4.1         243.3       0.4X
    --- End diff --
    
    Yep.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to