Github user gatorsmile commented on a diff in the pull request: https://github.com/apache/spark/pull/20023#discussion_r161819811 --- Diff: sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala --- @@ -136,10 +137,52 @@ object DecimalType extends AbstractDataType { case DoubleType => DoubleDecimal } + private[sql] def forLiteral(literal: Literal): DecimalType = literal.value match { + case v: Short => fromBigDecimal(BigDecimal(v)) + case v: Int => fromBigDecimal(BigDecimal(v)) + case v: Long => fromBigDecimal(BigDecimal(v)) + case _ => forType(literal.dataType) + } + + private[sql] def fromBigDecimal(d: BigDecimal): DecimalType = { + DecimalType(Math.max(d.precision, d.scale), d.scale) + } + private[sql] def bounded(precision: Int, scale: Int): DecimalType = { DecimalType(min(precision, MAX_PRECISION), min(scale, MAX_SCALE)) } + /** + * Scale adjustment implementation is based on Hive's one, which is itself inspired to + * SQLServer's one. In particular, when a result precision is greater than + * {@link #MAX_PRECISION}, the corresponding scale is reduced to prevent the integral part of a + * result from being truncated. + * + * This method is used only when `spark.sql.decimalOperations.allowPrecisionLoss` is set to true. + * + * @param precision + * @param scale + * @return + */ + private[sql] def adjustPrecisionScale(precision: Int, scale: Int): DecimalType = { --- End diff -- Yeah, this part is consistent.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org