Github user HyukjinKwon commented on a diff in the pull request:

    https://github.com/apache/spark/pull/21889#discussion_r209525706
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetSchemaPruning.scala
 ---
    @@ -0,0 +1,200 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.datasources.parquet
    +
    +import org.apache.spark.sql.catalyst.expressions.{And, Attribute, 
Expression, NamedExpression}
    +import org.apache.spark.sql.catalyst.planning.PhysicalOperation
    +import org.apache.spark.sql.catalyst.plans.logical.{Filter, LogicalPlan, 
Project}
    +import org.apache.spark.sql.catalyst.rules.Rule
    +import org.apache.spark.sql.execution.{ProjectionOverSchema, SelectedField}
    +import org.apache.spark.sql.execution.datasources.{HadoopFsRelation, 
LogicalRelation}
    +import org.apache.spark.sql.internal.SQLConf
    +import org.apache.spark.sql.types.{ArrayType, DataType, MapType, 
StructField, StructType}
    +
    +/**
    + * Prunes unnecessary Parquet columns given a [[PhysicalOperation]] over a
    + * [[ParquetRelation]]. By "Parquet column", we mean a column as defined 
in the
    + * Parquet format. In Spark SQL, a root-level Parquet column corresponds 
to a
    + * SQL column, and a nested Parquet column corresponds to a 
[[StructField]].
    + */
    +private[sql] object ParquetSchemaPruning extends Rule[LogicalPlan] {
    +  override def apply(plan: LogicalPlan): LogicalPlan =
    +    if (SQLConf.get.nestedSchemaPruningEnabled) {
    +      apply0(plan)
    +    } else {
    +      plan
    +    }
    +
    +  private def apply0(plan: LogicalPlan): LogicalPlan =
    +    plan transformDown {
    +      case op @ PhysicalOperation(projects, filters,
    +          l @ LogicalRelation(hadoopFsRelation @ HadoopFsRelation(_, _,
    +            dataSchema, _, _: ParquetFileFormat, _), _, _, _)) =>
    +        val projectionRootFields = projects.flatMap(getRootFields)
    +        val filterRootFields = filters.flatMap(getRootFields)
    +        val requestedRootFields = (projectionRootFields ++ 
filterRootFields).distinct
    +
    +        // If requestedRootFields includes a nested field, continue. 
Otherwise,
    +        // return op
    +        if (requestedRootFields.exists { case RootField(_, derivedFromAtt) 
=> !derivedFromAtt }) {
    +          val prunedDataSchema = buildPrunedDataSchema(dataSchema, 
requestedRootFields)
    +
    +          // If the data schema is different from the pruned data schema, 
continue. Otherwise,
    +          // return op. We effect this comparison by counting the number 
of "leaf" fields in
    +          // each schemata, assuming the fields in [[prunedDataSchema]] 
are a subset of the fields
    +          // in dataSchema.
    +          if (countLeaves(dataSchema) > countLeaves(prunedDataSchema)) {
    +            val prunedParquetRelation =
    +              hadoopFsRelation.copy(dataSchema = 
prunedDataSchema)(hadoopFsRelation.sparkSession)
    +
    +            val prunedRelation = buildPrunedRelation(l, 
prunedParquetRelation)
    +            val projectionOverSchema = 
ProjectionOverSchema(prunedDataSchema)
    +
    +            // Construct a new target for our projection by rewriting and
    +            // including the original filters where available
    +            val projectionChild =
    +              if (filters.nonEmpty) {
    +                val projectedFilters = filters.map(_.transformDown {
    +                  case projectionOverSchema(expr) => expr
    +                })
    +                val newFilterCondition = projectedFilters.reduce(And)
    +                Filter(newFilterCondition, prunedRelation)
    +              } else {
    +                prunedRelation
    +              }
    +
    +            // Construct the new projections of our Project by
    +            // rewriting the original projections
    +            val newProjects = projects.map(_.transformDown {
    +              case projectionOverSchema(expr) => expr
    +            }).map { case expr: NamedExpression => expr }
    +
    +            if (log.isDebugEnabled) {
    +              logDebug(s"New 
projects:\n${newProjects.map(_.treeString).mkString("\n")}")
    +              logDebug(s"Pruned data 
schema:\n${prunedDataSchema.treeString}")
    +            }
    +
    +            Project(newProjects, projectionChild)
    +          } else {
    +            op
    +          }
    +        } else {
    +          op
    +        }
    +    }
    +
    +  private def buildPrunedDataSchema(fileDataSchema: StructType,
    +                                    requestedRootFields: Seq[RootField]) = 
{
    +    // Merge the requested root fields into a single schema. Note the 
ordering of the fields
    +    // in the resulting schema may differ from their ordering in the 
logical relation's
    +    // original schema
    +    val mergedSchema = requestedRootFields
    +      .map { case RootField(field, _) => StructType(Array(field)) }
    +      .reduceLeft(_ merge _)
    +    val dataSchemaFieldNames = fileDataSchema.fieldNames.toSet
    +    val mergedDataSchema =
    +      StructType(mergedSchema.filter(f => 
dataSchemaFieldNames.contains(f.name)))
    +    // Sort the fields of [[mergedDataSchema]] according to their order in 
[[dataSchema]],
    --- End diff --
    
    `[[..]]` syntax is not needed in inlined comments.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to