Github user cloud-fan commented on a diff in the pull request:

    https://github.com/apache/spark/pull/22121#discussion_r211984616
  
    --- Diff: docs/avro-data-source-guide.md ---
    @@ -0,0 +1,377 @@
    +---
    +layout: global
    +title: Apache Avro Data Source Guide
    +---
    +
    +* This will become a table of contents (this text will be scraped).
    +{:toc}
    +
    +Since Spark 2.4 release, [Spark 
SQL](https://spark.apache.org/docs/latest/sql-programming-guide.html) provides 
built-in support for reading and writing Apache Avro data.
    +
    +## Deploying
    +The `spark-avro` module is external and not included in `spark-submit` or 
`spark-shell` by default.
    +
    +As with any Spark applications, `spark-submit` is used to launch your 
application. `spark-avro_{{site.SCALA_BINARY_VERSION}}`
    +and its dependencies can be directly added to `spark-submit` using 
`--packages`, such as,
    +
    +    ./bin/spark-submit --packages 
org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}}
 ...
    +
    +For experimenting on `spark-shell`, you can also use `--packages` to add 
`org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}` and its 
dependencies directly,
    +
    +    ./bin/spark-shell --packages 
org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}}
 ...
    +
    +See [Application Submission Guide](submitting-applications.html) for more 
details about submitting applications with external dependencies.
    +
    +## Load and Save Functions
    +
    +Since `spark-avro` module is external, there is no `.avro` API in 
    +`DataFrameReader` or `DataFrameWriter`.
    +
    +To load/save data in Avro format, you need to specify the data source 
option `format` as `avro`(or `org.apache.spark.sql.avro`).
    +<div class="codetabs">
    +<div data-lang="scala" markdown="1">
    +{% highlight scala %}
    +
    +val usersDF = 
spark.read.format("avro").load("examples/src/main/resources/users.avro")
    +usersDF.select("name", 
"favorite_color").write.format("avro").save("namesAndFavColors.avro")
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="java" markdown="1">
    +{% highlight java %}
    +
    +Dataset<Row> usersDF = 
spark.read().format("avro").load("examples/src/main/resources/users.avro");
    +usersDF.select("name", 
"favorite_color").write().format("avro").save("namesAndFavColors.avro");
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="python" markdown="1">
    +{% highlight python %}
    +
    +df = 
spark.read.format("avro").load("examples/src/main/resources/users.avro")
    +df.select("name", 
"favorite_color").write.format("avro").save("namesAndFavColors.avro")
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="r" markdown="1">
    +{% highlight r %}
    +
    +df <- read.df("examples/src/main/resources/users.avro", "avro")
    +write.df(select(df, "name", "favorite_color"), "namesAndFavColors.avro", 
"avro")
    +
    +{% endhighlight %}
    +</div>
    +</div>
    +
    +## to_avro() and from_avro()
    +Spark SQL provides function `to_avro` to encode a struct as a string and 
`from_avro()` to retrieve the struct as a complex type.
    --- End diff --
    
    not "Spark SQL", it should be "The Avro package"


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to