Github user cloud-fan commented on a diff in the pull request:

    https://github.com/apache/spark/pull/22121#discussion_r211986779
  
    --- Diff: docs/avro-data-source-guide.md ---
    @@ -0,0 +1,377 @@
    +---
    +layout: global
    +title: Apache Avro Data Source Guide
    +---
    +
    +* This will become a table of contents (this text will be scraped).
    +{:toc}
    +
    +Since Spark 2.4 release, [Spark 
SQL](https://spark.apache.org/docs/latest/sql-programming-guide.html) provides 
built-in support for reading and writing Apache Avro data.
    +
    +## Deploying
    +The `spark-avro` module is external and not included in `spark-submit` or 
`spark-shell` by default.
    +
    +As with any Spark applications, `spark-submit` is used to launch your 
application. `spark-avro_{{site.SCALA_BINARY_VERSION}}`
    +and its dependencies can be directly added to `spark-submit` using 
`--packages`, such as,
    +
    +    ./bin/spark-submit --packages 
org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}}
 ...
    +
    +For experimenting on `spark-shell`, you can also use `--packages` to add 
`org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}` and its 
dependencies directly,
    +
    +    ./bin/spark-shell --packages 
org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}}
 ...
    +
    +See [Application Submission Guide](submitting-applications.html) for more 
details about submitting applications with external dependencies.
    +
    +## Load and Save Functions
    +
    +Since `spark-avro` module is external, there is no `.avro` API in 
    +`DataFrameReader` or `DataFrameWriter`.
    +
    +To load/save data in Avro format, you need to specify the data source 
option `format` as `avro`(or `org.apache.spark.sql.avro`).
    +<div class="codetabs">
    +<div data-lang="scala" markdown="1">
    +{% highlight scala %}
    +
    +val usersDF = 
spark.read.format("avro").load("examples/src/main/resources/users.avro")
    +usersDF.select("name", 
"favorite_color").write.format("avro").save("namesAndFavColors.avro")
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="java" markdown="1">
    +{% highlight java %}
    +
    +Dataset<Row> usersDF = 
spark.read().format("avro").load("examples/src/main/resources/users.avro");
    +usersDF.select("name", 
"favorite_color").write().format("avro").save("namesAndFavColors.avro");
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="python" markdown="1">
    +{% highlight python %}
    +
    +df = 
spark.read.format("avro").load("examples/src/main/resources/users.avro")
    +df.select("name", 
"favorite_color").write.format("avro").save("namesAndFavColors.avro")
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="r" markdown="1">
    +{% highlight r %}
    +
    +df <- read.df("examples/src/main/resources/users.avro", "avro")
    +write.df(select(df, "name", "favorite_color"), "namesAndFavColors.avro", 
"avro")
    +
    +{% endhighlight %}
    +</div>
    +</div>
    +
    +## to_avro() and from_avro()
    +Spark SQL provides function `to_avro` to encode a struct as a string and 
`from_avro()` to retrieve the struct as a complex type.
    +
    +Using Avro record as columns are useful when reading from or writing to a 
streaming source like Kafka. Each 
    +Kafka key-value record will be augmented with some metadata, such as the 
ingestion timestamp into Kafka, the offset in Kafka, etc.
    +* If the "value" field that contains your data is in Avro, you could use 
`from_avro()` to extract your data, enrich it, clean it, and then push it 
downstream to Kafka again or write it out to a file.
    +* `to_avro()` can be used to turn structs into Avro records. This method 
is particularly useful when you would like to re-encode multiple columns into a 
single one when writing data out to Kafka.
    +
    +Both methods are presently only available in Scala and Java.
    +
    +<div class="codetabs">
    +<div data-lang="scala" markdown="1">
    +{% highlight scala %}
    +import org.apache.spark.sql.avro._
    +
    +// `from_avro` requires Avro schema in JSON string format.
    +val jsonFormatSchema = new 
String(Files.readAllBytes(Paths.get("./examples/src/main/resources/user.avsc")))
    +
    +val df = spark
    +  .readStream
    +  .format("kafka")
    +  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +  .option("subscribe", "topic1")
    +  .load()
    +
    +// 1. Decode the Avro data into a struct;
    +// 2. Filter by column `favorite_color`;
    +// 3. Encode the column `name` in Avro format.
    +val output = df
    +  .select(from_avro('value, jsonFormatSchema) as 'user)
    +  .where("user.favorite_color == \"red\"")
    +  .select(to_avro($"user.name") as 'value)
    +
    +val ds = output
    +  .writeStream
    +  .format("kafka")
    +  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +  .option("topic", "topic2")
    +  .start()
    +
    +{% endhighlight %}
    +</div>
    +<div data-lang="java" markdown="1">
    +{% highlight java %}
    +import org.apache.spark.sql.avro.*
    +
    +// `from_avro` requires Avro schema in JSON string format.
    +String jsonFormatSchema = new 
String(Files.readAllBytes(Paths.get("./examples/src/main/resources/user.avsc")))
    +
    +Dataset<Row> df = spark
    +  .readStream()
    +  .format("kafka")
    +  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +  .option("subscribe", "topic1")
    +  .load()
    +
    +// 1. Decode the Avro data into a struct;
    +// 2. Filter by column `favorite_color`;
    +// 3. Encode the column `name` in Avro format.
    +DataFrame output = df
    +  .select(from_avro(col("value"), jsonFormatSchema).as("user"))
    +  .where("user.favorite_color == \"red\"")
    +  .select(to_avro(col("user.name")).as("value"))
    +
    +StreamingQuery ds = output
    +  .writeStream()
    +  .format("kafka")
    +  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
    +  .option("topic", "topic2")
    +  .start()
    +
    +{% endhighlight %}
    +</div>
    +</div>
    +
    +## Data Source Option
    +
    +Data source options of Avro can be set using the `.option` method on 
`DataFrameReader` or `DataFrameWriter`.
    +<table class="table">
    +  <tr><th><b>Property 
Name</b></th><th><b>Default</b></th><th><b>Meaning</b></th><th><b>Scope</b></th></tr>
    +  <tr>
    +    <td><code>avroSchema</code></td>
    +    <td>None</td>
    +    <td>Optional Avro schema provided by an user in JSON format.</td>
    --- End diff --
    
    We should mention the behavior when the specified schema doesn't match the 
real schema.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to