Github user cloud-fan commented on a diff in the pull request: https://github.com/apache/spark/pull/22121#discussion_r211986779 --- Diff: docs/avro-data-source-guide.md --- @@ -0,0 +1,377 @@ +--- +layout: global +title: Apache Avro Data Source Guide +--- + +* This will become a table of contents (this text will be scraped). +{:toc} + +Since Spark 2.4 release, [Spark SQL](https://spark.apache.org/docs/latest/sql-programming-guide.html) provides built-in support for reading and writing Apache Avro data. + +## Deploying +The `spark-avro` module is external and not included in `spark-submit` or `spark-shell` by default. + +As with any Spark applications, `spark-submit` is used to launch your application. `spark-avro_{{site.SCALA_BINARY_VERSION}}` +and its dependencies can be directly added to `spark-submit` using `--packages`, such as, + + ./bin/spark-submit --packages org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}} ... + +For experimenting on `spark-shell`, you can also use `--packages` to add `org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}` and its dependencies directly, + + ./bin/spark-shell --packages org.apache.spark:spark-avro_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}} ... + +See [Application Submission Guide](submitting-applications.html) for more details about submitting applications with external dependencies. + +## Load and Save Functions + +Since `spark-avro` module is external, there is no `.avro` API in +`DataFrameReader` or `DataFrameWriter`. + +To load/save data in Avro format, you need to specify the data source option `format` as `avro`(or `org.apache.spark.sql.avro`). +<div class="codetabs"> +<div data-lang="scala" markdown="1"> +{% highlight scala %} + +val usersDF = spark.read.format("avro").load("examples/src/main/resources/users.avro") +usersDF.select("name", "favorite_color").write.format("avro").save("namesAndFavColors.avro") + +{% endhighlight %} +</div> +<div data-lang="java" markdown="1"> +{% highlight java %} + +Dataset<Row> usersDF = spark.read().format("avro").load("examples/src/main/resources/users.avro"); +usersDF.select("name", "favorite_color").write().format("avro").save("namesAndFavColors.avro"); + +{% endhighlight %} +</div> +<div data-lang="python" markdown="1"> +{% highlight python %} + +df = spark.read.format("avro").load("examples/src/main/resources/users.avro") +df.select("name", "favorite_color").write.format("avro").save("namesAndFavColors.avro") + +{% endhighlight %} +</div> +<div data-lang="r" markdown="1"> +{% highlight r %} + +df <- read.df("examples/src/main/resources/users.avro", "avro") +write.df(select(df, "name", "favorite_color"), "namesAndFavColors.avro", "avro") + +{% endhighlight %} +</div> +</div> + +## to_avro() and from_avro() +Spark SQL provides function `to_avro` to encode a struct as a string and `from_avro()` to retrieve the struct as a complex type. + +Using Avro record as columns are useful when reading from or writing to a streaming source like Kafka. Each +Kafka key-value record will be augmented with some metadata, such as the ingestion timestamp into Kafka, the offset in Kafka, etc. +* If the "value" field that contains your data is in Avro, you could use `from_avro()` to extract your data, enrich it, clean it, and then push it downstream to Kafka again or write it out to a file. +* `to_avro()` can be used to turn structs into Avro records. This method is particularly useful when you would like to re-encode multiple columns into a single one when writing data out to Kafka. + +Both methods are presently only available in Scala and Java. + +<div class="codetabs"> +<div data-lang="scala" markdown="1"> +{% highlight scala %} +import org.apache.spark.sql.avro._ + +// `from_avro` requires Avro schema in JSON string format. +val jsonFormatSchema = new String(Files.readAllBytes(Paths.get("./examples/src/main/resources/user.avsc"))) + +val df = spark + .readStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1") + .load() + +// 1. Decode the Avro data into a struct; +// 2. Filter by column `favorite_color`; +// 3. Encode the column `name` in Avro format. +val output = df + .select(from_avro('value, jsonFormatSchema) as 'user) + .where("user.favorite_color == \"red\"") + .select(to_avro($"user.name") as 'value) + +val ds = output + .writeStream + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("topic", "topic2") + .start() + +{% endhighlight %} +</div> +<div data-lang="java" markdown="1"> +{% highlight java %} +import org.apache.spark.sql.avro.* + +// `from_avro` requires Avro schema in JSON string format. +String jsonFormatSchema = new String(Files.readAllBytes(Paths.get("./examples/src/main/resources/user.avsc"))) + +Dataset<Row> df = spark + .readStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("subscribe", "topic1") + .load() + +// 1. Decode the Avro data into a struct; +// 2. Filter by column `favorite_color`; +// 3. Encode the column `name` in Avro format. +DataFrame output = df + .select(from_avro(col("value"), jsonFormatSchema).as("user")) + .where("user.favorite_color == \"red\"") + .select(to_avro(col("user.name")).as("value")) + +StreamingQuery ds = output + .writeStream() + .format("kafka") + .option("kafka.bootstrap.servers", "host1:port1,host2:port2") + .option("topic", "topic2") + .start() + +{% endhighlight %} +</div> +</div> + +## Data Source Option + +Data source options of Avro can be set using the `.option` method on `DataFrameReader` or `DataFrameWriter`. +<table class="table"> + <tr><th><b>Property Name</b></th><th><b>Default</b></th><th><b>Meaning</b></th><th><b>Scope</b></th></tr> + <tr> + <td><code>avroSchema</code></td> + <td>None</td> + <td>Optional Avro schema provided by an user in JSON format.</td> --- End diff -- We should mention the behavior when the specified schema doesn't match the real schema.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org