Github user squito commented on a diff in the pull request: https://github.com/apache/spark/pull/22612#discussion_r227054038 --- Diff: core/src/main/scala/org/apache/spark/executor/ProcfsBasedSystems.scala --- @@ -0,0 +1,226 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.executor + +import java.io._ +import java.nio.charset.Charset +import java.nio.file.{Files, Paths} +import java.util.Locale + +import scala.collection.mutable +import scala.collection.mutable.ArrayBuffer + +import org.apache.spark.{SparkEnv, SparkException} +import org.apache.spark.internal.{config, Logging} +import org.apache.spark.util.Utils + +private[spark] case class ProcfsBasedSystemsMetrics( + jvmVmemTotal: Long, + jvmRSSTotal: Long, + pythonVmemTotal: Long, + pythonRSSTotal: Long, + otherVmemTotal: Long, + otherRSSTotal: Long) + +// Some of the ideas here are taken from the ProcfsBasedProcessTree class in hadoop +// project. +private[spark] class ProcfsBasedSystems(val procfsDir: String = "/proc/") extends Logging { + val procfsStatFile = "stat" + val testing = sys.env.contains("SPARK_TESTING") || sys.props.contains("spark.testing") + var pageSize = computePageSize() + var isAvailable: Boolean = isProcfsAvailable + private val pid = computePid() + private val ptree = mutable.Map[ Int, Set[Int]]() + + var allMetrics: ProcfsBasedSystemsMetrics = ProcfsBasedSystemsMetrics(0, 0, 0, 0, 0, 0) + + computeProcessTree() + + private def isProcfsAvailable: Boolean = { + if (testing) { + return true + } + try { + if (!Files.exists(Paths.get(procfsDir))) { + return false + } + } + catch { + case f: FileNotFoundException => return false + } + val shouldLogStageExecutorMetrics = + SparkEnv.get.conf.get(config.EVENT_LOG_STAGE_EXECUTOR_METRICS) + val shouldLogStageExecutorProcessTreeMetrics = + SparkEnv.get.conf.get(config.EVENT_LOG_PROCESS_TREE_METRICS) + shouldLogStageExecutorProcessTreeMetrics && shouldLogStageExecutorMetrics + } + + private def computePid(): Int = { + if (!isAvailable || testing) { + return -1; + } + try { + // This can be simplified in java9: + // https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html + val cmd = Array("bash", "-c", "echo $PPID") + val length = 10 + val out2 = Utils.executeAndGetOutput(cmd) + val pid = Integer.parseInt(out2.split("\n")(0)) + return pid; + } + catch { + case e: SparkException => logDebug("IO Exception when trying to compute process tree." + --- End diff -- well, executeAndGetOutput might throw a SparkException ... but are you sure nothing else will get thrown? Eg. what if you get some weird output and then the `Integer.parseInt` failse? Is there some reason you wouldn't want the same error handling for any exception here?
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org