On Ubuntu 16.04, the command 

sage -t --all --optional=sage,optional,external

tests the following optional and external doctests:

Using 
--optional=bliss,cbc,ccache,cmake,dot2tex,external,gmpy2,lrslib,memlimit,mpir,normaliz,notedown,pandoc_attributes,pycosat,pynormaliz,python2,rst2ipynb,sage
External software detected for doctesting: 
ffmpeg,graphviz,gurobi,imagemagick,internet,latex,pandoc


and gives All tests passed except the following ones:

----------------------------------------------------------------------
sage -t --long src/sage/databases/findstat.py  # 5 doctests failed
sage -t --long src/sage/symbolic/integration/integral.py  # 1 doctest failed
sage -t --long src/sage/combinat/tutorial.py  # 1 doctest failed
sage -t --long src/sage/symbolic/integration/external.py  # 3 doctests 
failed
sage -t --long src/sage/combinat/designs/ext_rep.py  # 1 doctest failed
sage -t --long src/sage/repl/load.py  # 1 doctest failed
sage -t --long src/sage/misc/persist.pyx  # 2 doctests failed
sage -t --long src/sage/databases/sql_db.py  # 2 doctests failed
----------------------------------------------------------------------


Follow up at https://trac.sagemath.org/ticket/25536. New failures are 
copied below.



sage -t --long src/sage/combinat/tutorial.py
**********************************************************************
File "src/sage/combinat/tutorial.py", line 224, in sage.combinat.tutorial
Failed example:
    oeis([1,1,2,5,14])                            # optional -- internet
Expected:
    0: A000108: Catalan numbers: C(n) = binomial(2n,n)/(n+1) = 
(2n)!/(n!(n+1)!). Also called Segner numbers.
    1: A120588: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with a(0) = 1.
    2: ...
Got:
    0: A000108: Catalan numbers: C(n) = binomial(2n,n)/(n+1) = 
(2n)!/(n!(n+1)!). Also called Segner numbers.
    1: A124302: Number of set partitions with at most 3 blocks; number of 
Dyck paths of height at most 4; dimension of space of symmetric polynomials 
in 3 noncommuting variables.
    2: A120588: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with a(0) = 1.
**********************************************************************
1 item had failures:
   1 of 249 in sage.combinat.tutorial
    5 tests for not implemented functionality not run
    6 not tested tests not run
    0 tests not run because we ran out of time
    [248 tests, 1 failure, 24.70 s]


sage -t --long src/sage/databases/sql_db.py
**********************************************************************
File "src/sage/databases/sql_db.py", line 956, in 
sage.databases.sql_db.SQLDatabase.__init__
Failed example:
    D.show('simon')
Expected:
    graph6               vertices             edges
    ------------------------------------------------------------
    ?                    0                    0
    @                    1                    0
    A?                   2                    0
    A_                   2                    1
    B?                   3                    0
    BG                   3                    1
    BW                   3                    2
    Bw                   3                    3
    C?                   4                    0
    C@                   4                    1
    CB                   4                    2
    CF                   4                    3
    CJ                   4                    3
    CK                   4                    2
    CL                   4                    3
    CN                   4                    4
    C]                   4                    4
    C^                   4                    5
    C~                   4                    6
Got:
    graph6               vertices             edges               
    ------------------------------------------------------------
    ?                    0                    0                   
    @                    1                    0                   
    A?                   2                    0                   
    A_                   2                    1                   
    B?                   3                    0                   
    BG                   3                    1                   
    BW                   3                    2                   
    Bw                   3                    3                   
    C?                   4                    0                   
    C@                   4                    1                   
    CB                   4                    2                   
    CF                   4                    3                   
    CJ                   4                    3                   
    C`                   4                    2                   
    CR                   4                    3                   
    CN                   4                    4                   
    Cr                   4                    4                   
    C^                   4                    5                   
    C~                   4                    6                   
**********************************************************************
File "src/sage/databases/sql_db.py", line 1004, in 
sage.databases.sql_db.SQLDatabase.__init__
Failed example:
    E.show('simon')
Expected:
    graph6               vertices             edges
    ------------------------------------------------------------
    ?                    0                    0
    @                    1                    0
    A?                   2                    0
    A_                   2                    1
    B?                   3                    0
    BG                   3                    1
    BW                   3                    2
    Bw                   3                    3
    C?                   4                    0
    C@                   4                    1
    CB                   4                    2
    CF                   4                    3
    CJ                   4                    3
    CK                   4                    2
    CL                   4                    3
    CN                   4                    4
    C]                   4                    4
    C^                   4                    5
    C~                   4                    6
Got:
    graph6               vertices             edges               
    ------------------------------------------------------------
    ?                    0                    0                   
    @                    1                    0                   
    A?                   2                    0                   
    A_                   2                    1                   
    B?                   3                    0                   
    BG                   3                    1                   
    BW                   3                    2                   
    Bw                   3                    3                   
    C?                   4                    0                   
    C@                   4                    1                   
    CB                   4                    2                   
    CF                   4                    3                   
    CJ                   4                    3                   
    C`                   4                    2                   
    CR                   4                    3                   
    CN                   4                    4                   
    Cr                   4                    4                   
    C^                   4                    5                   
    C~                   4                    6                   
**********************************************************************
1 item had failures:
   2 of  26 in sage.databases.sql_db.SQLDatabase.__init__
    0 tests not run because we ran out of time
    [288 tests, 2 failures, 1.71 s]

sage -t --long src/sage/databases/findstat.py
**********************************************************************
File "src/sage/databases/findstat.py", line 40, in sage.databases.findstat
Failed example:
    r = findstat([(m, m.number_of_nestings()) for n in range(6) for m in 
PM(2*n)]); r    # optional -- internet
Expected:
    0: (St000041: The number of nestings of a perfect matching., [], 1000)
    1: (St000042: The number of crossings of a perfect matching., [Mp00116: 
Kasraoui-Zeng], 1000)
    ...
Got:
    0: 0: St000041: The number of nestings of a perfect matching.
    1: []
    2: 1000
    1: 0: St000042: The number of crossings of a perfect matching.
    1: [Mp00116: Kasraoui-Zeng]
    2: 1000
    2: 0: St000233: The number of nestings of a set partition.
    1: [Mp00092: to set partition]
    2: 1000
    3: 0: St000496: The rcs statistic of a set partition.
    1: [Mp00092: to set partition]
    2: 1000
    4: 0: St000123: The difference in Coxeter length of a permutation and 
its image under the Simion-Schmidt map.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 1000
    5: 0: St000232: The number of crossings of a set partition.
    1: [Mp00092: to set partition, Mp00115: Kasraoui-Zeng]
    2: 1000
    6: 0: St000359: The number of occurrences of the pattern 23-1.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 1000
**********************************************************************
File "src/sage/databases/findstat.py", line 90, in sage.databases.findstat
Failed example:
    r = findstat([(PM(2*n), [m.number_of_nestings() for m in PM(2*n)]) for 
n in range(5)]); r # optional -- internet
Expected:
    0: (St000041: The number of nestings of a perfect matching., [], 124)
    1: (St000042: The number of crossings of a perfect matching., [], 124)
    ...
Got:
     0: 0: St000041: The number of nestings of a perfect matching.
    1: []
    2: 124
     1: 0: St000042: The number of crossings of a perfect matching.
    1: []
    2: 124
     2: 0: St000232: The number of crossings of a set partition.
    1: [Mp00092: to set partition]
    2: 124
     3: 0: St000233: The number of nestings of a set partition.
    1: [Mp00092: to set partition]
    2: 124
     4: 0: St000496: The rcs statistic of a set partition.
    1: [Mp00092: to set partition]
    2: 124
     5: 0: St000559: The number of occurrences of the pattern {{1,3},{2,4}} 
in a set partition.
    1: [Mp00092: to set partition]
    2: 124
     6: 0: St000563: The number of overlapping pairs of blocks of a set 
partition.
    1: [Mp00092: to set partition]
    2: 124
     7: 0: St000123: The difference in Coxeter length of a permutation and 
its image under the Simion-Schmidt map.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 124
     8: 0: St000358: The number of occurrences of the pattern 31-2.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 124
     9: 0: St000359: The number of occurrences of the pattern 23-1.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 124
    10: 0: St000360: The number of occurrences of the pattern 32-1.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 124
    11: 0: St000538: The number of even inversions of a permutation.
    1: [Mp00058: to permutation, Mp00087: inverse first fundamental 
transformation]
    2: 124
**********************************************************************
File "src/sage/databases/findstat.py", line 107, in sage.databases.findstat
Failed example:
    r = findstat(Permutations, lambda pi: pi.saliances()[0]); r           # 
optional -- internet
Expected:
    0: ... (St000051: The size of the left subtree of a binary tree., 
[Mp00069: complement, Mp00061: to increasing tree], 1000)
    ...
Got:
     0: 0: St000199: The column of the unique '1' in the last row of the 
alternating sign matrix.
    1: [Mp00063: to alternating sign matrix]
    2: 1000
     1: 0: St000740: The last entry of a permutation.
    1: [Mp00062: inversion-number to major-index bijection]
    2: 1000
     2: 0: St001291: The number of indecomposable summands of the tensor 
product of two copies of the dual of the Nakayama algebra associated to a 
Dyck path.
    1: [Mp00127: left-to-right-maxima to Dyck path]
    2: 1000
     3: 0: St000051: The size of the left subtree of a binary tree.
    1: [Mp00069: complement, Mp00061: to increasing tree]
    2: 1000
     4: 0: St000054: The first entry of the permutation.
    1: [Mp00062: inversion-number to major-index bijection, Mp00064: 
reverse]
    2: 1000
     5: 0: St000066: The column of the unique '1' in the first row of the 
alternating sign matrix.
    1: [Mp00069: complement, Mp00063: to alternating sign matrix]
    2: 1000
     6: 0: St000141: The maximum drop size of a permutation.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00025: to 
132-avoiding permutation]
    2: 1000
     7: 0: St000147: The largest part of an integer partition.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00027: to partition]
    2: 1000
     8: 0: St000193: The row of the unique '1' in the first column of the 
alternating sign matrix.
    1: [Mp00063: to alternating sign matrix, Mp00004: rotate clockwise]
    2: 1000
     9: 0: St000200: The row of the unique '1' in the last column of the 
alternating sign matrix.
    1: [Mp00062: inversion-number to major-index bijection, Mp00063: to 
alternating sign matrix]
    2: 1000
    10: 0: St000316: The number of non-left-to-right-maxima of a 
permutation.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00025: to 
132-avoiding permutation]
    2: 1000
    11: 0: St000476: The sum of the semi-lengths of tunnels before a valley 
of a Dyck path.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00099: bounce path]
    2: 1000
    12: 0: St000653: The last descent of a permutation.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00129: to 
321-avoiding permutation (Billey-Jockusch-Stanley)]
    2: 1000
    13: 0: St000840: The number of closers smaller than the largest opener 
in a perfect matching.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00146: to noncrossing 
matching]
    2: 1000
    14: 0: St001184: Number of indecomposable injective modules with grade 
at least 1 in the corresponding Nakayama algebra.
    1: [Mp00064: reverse, Mp00127: left-to-right-maxima to Dyck path]
    2: 1000
    15: 0: St001227: The vector space dimension of the first extension 
group between the socle of the regular module and the Jacobson radical of 
the corresponding Nakayama algebra.
    1: [Mp00127: left-to-right-maxima to Dyck path, Mp00028: reverse]
    2: 1000
**********************************************************************
File "src/sage/databases/findstat.py", line 832, in 
sage.databases.findstat.FindStatStatistic.__repr__
Failed example:
    findstat([(pi, pi(1)) for pi in Permutations(4)], depth=0)    # 
optional -- internet
Expected:
    0: (St000054: ...
Got:
    0: 0: St000054: The first entry of the permutation.
    1: []
    2: 24
**********************************************************************
File "src/sage/databases/findstat.py", line 1015, in 
sage.databases.findstat.FindStatStatistic._find_by_values
Failed example:
    FindStatStatistic(id=0,data=data, first_terms = first_terms, collection 
= collection, depth=0)._find_by_values() # optional -- internet
Expected:
    0: (St000012: The area of a Dyck path., [], 14)
    ...
Got:
    0: 0: St000012: The area of a Dyck path.
    1: []
    2: 14
    1: 0: St001228: The vector space dimension of the space of module 
homomorphisms between J and itself when J denotes the Jacobson radical of 
the corresponding Nakayama algebra.
    1: []
    2: 14
    2: 0: St001295: Gives the vector space dimension of the homomorphism 
space between J^2 and J^2.
    1: []
    2: 14
**********************************************************************
3 items had failures:
   3 of  16 in sage.databases.findstat
   1 of   4 in sage.databases.findstat.FindStatStatistic.__repr__
   1 of   9 in sage.databases.findstat.FindStatStatistic._find_by_values
    7 webbrowser tests not run
    0 tests not run because we ran out of time
    [247 tests, 5 failures, 95.47 s]

-- 
You received this message because you are subscribed to the Google Groups 
"sage-release" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-release+unsubscr...@googlegroups.com.
To post to this group, send email to sage-release@googlegroups.com.
Visit this group at https://groups.google.com/group/sage-release.
For more options, visit https://groups.google.com/d/optout.

Reply via email to