On Ubuntu 16.04, the command sage -t --all --optional=sage,optional,external
tests the following optional and external doctests: Using --optional=bliss,cbc,ccache,cmake,dot2tex,external,gmpy2,lrslib,memlimit,mpir,normaliz,notedown,pandoc_attributes,pycosat,pynormaliz,python2,rst2ipynb,sage External software detected for doctesting: ffmpeg,graphviz,gurobi,imagemagick,internet,latex,pandoc and gives All tests passed except the following ones: ---------------------------------------------------------------------- sage -t --long src/sage/databases/findstat.py # 5 doctests failed sage -t --long src/sage/symbolic/integration/integral.py # 1 doctest failed sage -t --long src/sage/combinat/tutorial.py # 1 doctest failed sage -t --long src/sage/symbolic/integration/external.py # 3 doctests failed sage -t --long src/sage/combinat/designs/ext_rep.py # 1 doctest failed sage -t --long src/sage/repl/load.py # 1 doctest failed sage -t --long src/sage/misc/persist.pyx # 2 doctests failed sage -t --long src/sage/databases/sql_db.py # 2 doctests failed ---------------------------------------------------------------------- Follow up at https://trac.sagemath.org/ticket/25536. New failures are copied below. sage -t --long src/sage/combinat/tutorial.py ********************************************************************** File "src/sage/combinat/tutorial.py", line 224, in sage.combinat.tutorial Failed example: oeis([1,1,2,5,14]) # optional -- internet Expected: 0: A000108: Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers. 1: A120588: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with a(0) = 1. 2: ... Got: 0: A000108: Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers. 1: A124302: Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables. 2: A120588: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with a(0) = 1. ********************************************************************** 1 item had failures: 1 of 249 in sage.combinat.tutorial 5 tests for not implemented functionality not run 6 not tested tests not run 0 tests not run because we ran out of time [248 tests, 1 failure, 24.70 s] sage -t --long src/sage/databases/sql_db.py ********************************************************************** File "src/sage/databases/sql_db.py", line 956, in sage.databases.sql_db.SQLDatabase.__init__ Failed example: D.show('simon') Expected: graph6 vertices edges ------------------------------------------------------------ ? 0 0 @ 1 0 A? 2 0 A_ 2 1 B? 3 0 BG 3 1 BW 3 2 Bw 3 3 C? 4 0 C@ 4 1 CB 4 2 CF 4 3 CJ 4 3 CK 4 2 CL 4 3 CN 4 4 C] 4 4 C^ 4 5 C~ 4 6 Got: graph6 vertices edges ------------------------------------------------------------ ? 0 0 @ 1 0 A? 2 0 A_ 2 1 B? 3 0 BG 3 1 BW 3 2 Bw 3 3 C? 4 0 C@ 4 1 CB 4 2 CF 4 3 CJ 4 3 C` 4 2 CR 4 3 CN 4 4 Cr 4 4 C^ 4 5 C~ 4 6 ********************************************************************** File "src/sage/databases/sql_db.py", line 1004, in sage.databases.sql_db.SQLDatabase.__init__ Failed example: E.show('simon') Expected: graph6 vertices edges ------------------------------------------------------------ ? 0 0 @ 1 0 A? 2 0 A_ 2 1 B? 3 0 BG 3 1 BW 3 2 Bw 3 3 C? 4 0 C@ 4 1 CB 4 2 CF 4 3 CJ 4 3 CK 4 2 CL 4 3 CN 4 4 C] 4 4 C^ 4 5 C~ 4 6 Got: graph6 vertices edges ------------------------------------------------------------ ? 0 0 @ 1 0 A? 2 0 A_ 2 1 B? 3 0 BG 3 1 BW 3 2 Bw 3 3 C? 4 0 C@ 4 1 CB 4 2 CF 4 3 CJ 4 3 C` 4 2 CR 4 3 CN 4 4 Cr 4 4 C^ 4 5 C~ 4 6 ********************************************************************** 1 item had failures: 2 of 26 in sage.databases.sql_db.SQLDatabase.__init__ 0 tests not run because we ran out of time [288 tests, 2 failures, 1.71 s] sage -t --long src/sage/databases/findstat.py ********************************************************************** File "src/sage/databases/findstat.py", line 40, in sage.databases.findstat Failed example: r = findstat([(m, m.number_of_nestings()) for n in range(6) for m in PM(2*n)]); r # optional -- internet Expected: 0: (St000041: The number of nestings of a perfect matching., [], 1000) 1: (St000042: The number of crossings of a perfect matching., [Mp00116: Kasraoui-Zeng], 1000) ... Got: 0: 0: St000041: The number of nestings of a perfect matching. 1: [] 2: 1000 1: 0: St000042: The number of crossings of a perfect matching. 1: [Mp00116: Kasraoui-Zeng] 2: 1000 2: 0: St000233: The number of nestings of a set partition. 1: [Mp00092: to set partition] 2: 1000 3: 0: St000496: The rcs statistic of a set partition. 1: [Mp00092: to set partition] 2: 1000 4: 0: St000123: The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 1000 5: 0: St000232: The number of crossings of a set partition. 1: [Mp00092: to set partition, Mp00115: Kasraoui-Zeng] 2: 1000 6: 0: St000359: The number of occurrences of the pattern 23-1. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 1000 ********************************************************************** File "src/sage/databases/findstat.py", line 90, in sage.databases.findstat Failed example: r = findstat([(PM(2*n), [m.number_of_nestings() for m in PM(2*n)]) for n in range(5)]); r # optional -- internet Expected: 0: (St000041: The number of nestings of a perfect matching., [], 124) 1: (St000042: The number of crossings of a perfect matching., [], 124) ... Got: 0: 0: St000041: The number of nestings of a perfect matching. 1: [] 2: 124 1: 0: St000042: The number of crossings of a perfect matching. 1: [] 2: 124 2: 0: St000232: The number of crossings of a set partition. 1: [Mp00092: to set partition] 2: 124 3: 0: St000233: The number of nestings of a set partition. 1: [Mp00092: to set partition] 2: 124 4: 0: St000496: The rcs statistic of a set partition. 1: [Mp00092: to set partition] 2: 124 5: 0: St000559: The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. 1: [Mp00092: to set partition] 2: 124 6: 0: St000563: The number of overlapping pairs of blocks of a set partition. 1: [Mp00092: to set partition] 2: 124 7: 0: St000123: The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 124 8: 0: St000358: The number of occurrences of the pattern 31-2. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 124 9: 0: St000359: The number of occurrences of the pattern 23-1. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 124 10: 0: St000360: The number of occurrences of the pattern 32-1. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 124 11: 0: St000538: The number of even inversions of a permutation. 1: [Mp00058: to permutation, Mp00087: inverse first fundamental transformation] 2: 124 ********************************************************************** File "src/sage/databases/findstat.py", line 107, in sage.databases.findstat Failed example: r = findstat(Permutations, lambda pi: pi.saliances()[0]); r # optional -- internet Expected: 0: ... (St000051: The size of the left subtree of a binary tree., [Mp00069: complement, Mp00061: to increasing tree], 1000) ... Got: 0: 0: St000199: The column of the unique '1' in the last row of the alternating sign matrix. 1: [Mp00063: to alternating sign matrix] 2: 1000 1: 0: St000740: The last entry of a permutation. 1: [Mp00062: inversion-number to major-index bijection] 2: 1000 2: 0: St001291: The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. 1: [Mp00127: left-to-right-maxima to Dyck path] 2: 1000 3: 0: St000051: The size of the left subtree of a binary tree. 1: [Mp00069: complement, Mp00061: to increasing tree] 2: 1000 4: 0: St000054: The first entry of the permutation. 1: [Mp00062: inversion-number to major-index bijection, Mp00064: reverse] 2: 1000 5: 0: St000066: The column of the unique '1' in the first row of the alternating sign matrix. 1: [Mp00069: complement, Mp00063: to alternating sign matrix] 2: 1000 6: 0: St000141: The maximum drop size of a permutation. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00025: to 132-avoiding permutation] 2: 1000 7: 0: St000147: The largest part of an integer partition. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00027: to partition] 2: 1000 8: 0: St000193: The row of the unique '1' in the first column of the alternating sign matrix. 1: [Mp00063: to alternating sign matrix, Mp00004: rotate clockwise] 2: 1000 9: 0: St000200: The row of the unique '1' in the last column of the alternating sign matrix. 1: [Mp00062: inversion-number to major-index bijection, Mp00063: to alternating sign matrix] 2: 1000 10: 0: St000316: The number of non-left-to-right-maxima of a permutation. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00025: to 132-avoiding permutation] 2: 1000 11: 0: St000476: The sum of the semi-lengths of tunnels before a valley of a Dyck path. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00099: bounce path] 2: 1000 12: 0: St000653: The last descent of a permutation. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00129: to 321-avoiding permutation (Billey-Jockusch-Stanley)] 2: 1000 13: 0: St000840: The number of closers smaller than the largest opener in a perfect matching. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00146: to noncrossing matching] 2: 1000 14: 0: St001184: Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. 1: [Mp00064: reverse, Mp00127: left-to-right-maxima to Dyck path] 2: 1000 15: 0: St001227: The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. 1: [Mp00127: left-to-right-maxima to Dyck path, Mp00028: reverse] 2: 1000 ********************************************************************** File "src/sage/databases/findstat.py", line 832, in sage.databases.findstat.FindStatStatistic.__repr__ Failed example: findstat([(pi, pi(1)) for pi in Permutations(4)], depth=0) # optional -- internet Expected: 0: (St000054: ... Got: 0: 0: St000054: The first entry of the permutation. 1: [] 2: 24 ********************************************************************** File "src/sage/databases/findstat.py", line 1015, in sage.databases.findstat.FindStatStatistic._find_by_values Failed example: FindStatStatistic(id=0,data=data, first_terms = first_terms, collection = collection, depth=0)._find_by_values() # optional -- internet Expected: 0: (St000012: The area of a Dyck path., [], 14) ... Got: 0: 0: St000012: The area of a Dyck path. 1: [] 2: 14 1: 0: St001228: The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra. 1: [] 2: 14 2: 0: St001295: Gives the vector space dimension of the homomorphism space between J^2 and J^2. 1: [] 2: 14 ********************************************************************** 3 items had failures: 3 of 16 in sage.databases.findstat 1 of 4 in sage.databases.findstat.FindStatStatistic.__repr__ 1 of 9 in sage.databases.findstat.FindStatStatistic._find_by_values 7 webbrowser tests not run 0 tests not run because we ran out of time [247 tests, 5 failures, 95.47 s] -- You received this message because you are subscribed to the Google Groups "sage-release" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-release+unsubscr...@googlegroups.com. To post to this group, send email to sage-release@googlegroups.com. Visit this group at https://groups.google.com/group/sage-release. For more options, visit https://groups.google.com/d/optout.