If I is Ideal(x+y+z-3,x^2+y^2+z^2-5,x^3+y^3+z^3-7) and X=V(I), where V(I) is the variety of I and I have the following code Code: P.<x,y,z> = PolynomialRing(CC,order='lex') I = Ideal(x+y+z-3,x^2+y^2+z^2-5,x^3+y^3+z^3-7) ans=I.groebner_basis() print ans and i get an output [x + y + z - 3.00000000000000, y^2 + y*z + (-3.00000000000000)*y + z^2 + (-3.00000000000000)*z + 2.00000000000000, z^3 + (-3.00000000000000)*z^2 + 2.00000000000000*z + 0.666666666666667]
how do I use this lex grobner basis to produce code that would output the size of the set X -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org