If I is Ideal(x+y+z-3,x^2+y^2+z^2-5,x^3+y^3+z^3-7) and X=V(I), where
V(I) is the variety of I
and I have the following code
Code:
P.<x,y,z> = PolynomialRing(CC,order='lex')
I = Ideal(x+y+z-3,x^2+y^2+z^2-5,x^3+y^3+z^3-7)
ans=I.groebner_basis()
print ans
and i get an output
[x + y + z - 3.00000000000000, y^2 + y*z + (-3.00000000000000)*y + z^2
+ (-3.00000000000000)*z + 2.00000000000000, z^3 +
(-3.00000000000000)*z^2 + 2.00000000000000*z + 0.666666666666667]

how do I use this lex grobner basis to produce code that would output
the size of the set X

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to