[jira] [Commented] (SPARK-19416) Dataset.schema is inconsistent with Dataset in handling columns with periods
[ https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16379034#comment-16379034 ] Joseph K. Bradley commented on SPARK-19416: --- [~rxin] Shall we close this as Won't Do, or shall we mark it as a thing to break in 3.0? > Dataset.schema is inconsistent with Dataset in handling columns with periods > > > Key: SPARK-19416 > URL: https://issues.apache.org/jira/browse/SPARK-19416 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0 >Reporter: Joseph K. Bradley >Priority: Minor > > When you have a DataFrame with a column with a period in its name, the API is > inconsistent about how to quote the column name. > Here's a reproduction: > {code} > import org.apache.spark.sql.functions.col > val rows = Seq( > ("foo", 1), > ("bar", 2) > ) > val df = spark.createDataFrame(rows).toDF("a.b", "id") > {code} > These methods are all consistent: > {code} > df.select("a.b") // fails > df.select("`a.b`") // succeeds > df.select(col("a.b")) // fails > df.select(col("`a.b`")) // succeeds > df("a.b") // fails > df("`a.b`") // succeeds > {code} > But {{schema}} is inconsistent: > {code} > df.schema("a.b") // succeeds > df.schema("`a.b`") // fails > {code} > "fails" produces error messages like: > {code} > org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input > columns: [a.b, id];; > 'Project ['a.b] > +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517] >+- LocalRelation [_1#1511, _2#1512] > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) > at > org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1121) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1139) > at > line9667c6d14e79417280e5882aa52e0de727.$read$$iw$$iw$$iw$$
[jira] [Commented] (SPARK-19416) Dataset.schema is inconsistent with Dataset in handling columns with periods
[ https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15924646#comment-15924646 ] Reynold Xin commented on SPARK-19416: - We probably can't change any of them now, unless we introduce a config flag for the more consistent behavior. > Dataset.schema is inconsistent with Dataset in handling columns with periods > > > Key: SPARK-19416 > URL: https://issues.apache.org/jira/browse/SPARK-19416 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0 >Reporter: Joseph K. Bradley >Priority: Minor > > When you have a DataFrame with a column with a period in its name, the API is > inconsistent about how to quote the column name. > Here's a reproduction: > {code} > import org.apache.spark.sql.functions.col > val rows = Seq( > ("foo", 1), > ("bar", 2) > ) > val df = spark.createDataFrame(rows).toDF("a.b", "id") > {code} > These methods are all consistent: > {code} > df.select("a.b") // fails > df.select("`a.b`") // succeeds > df.select(col("a.b")) // fails > df.select(col("`a.b`")) // succeeds > df("a.b") // fails > df("`a.b`") // succeeds > {code} > But {{schema}} is inconsistent: > {code} > df.schema("a.b") // succeeds > df.schema("`a.b`") // fails > {code} > "fails" produces error messages like: > {code} > org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input > columns: [a.b, id];; > 'Project ['a.b] > +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517] >+- LocalRelation [_1#1511, _2#1512] > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) > at > org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1121) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1139) > at > line9667c6d14e79417280e5882aa52e0de727.$read$$iw
[jira] [Commented] (SPARK-19416) Dataset.schema is inconsistent with Dataset in handling columns with periods
[ https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15923286#comment-15923286 ] Joseph K. Bradley commented on SPARK-19416: --- Hm, I'd call my synopsis above a "complaint" but not a "solution." I'll defer to Spark SQL component experts for a decision. CC [~davies] or [~r...@databricks.com] for a start. > Dataset.schema is inconsistent with Dataset in handling columns with periods > > > Key: SPARK-19416 > URL: https://issues.apache.org/jira/browse/SPARK-19416 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0 >Reporter: Joseph K. Bradley >Priority: Minor > > When you have a DataFrame with a column with a period in its name, the API is > inconsistent about how to quote the column name. > Here's a reproduction: > {code} > import org.apache.spark.sql.functions.col > val rows = Seq( > ("foo", 1), > ("bar", 2) > ) > val df = spark.createDataFrame(rows).toDF("a.b", "id") > {code} > These methods are all consistent: > {code} > df.select("a.b") // fails > df.select("`a.b`") // succeeds > df.select(col("a.b")) // fails > df.select(col("`a.b`")) // succeeds > df("a.b") // fails > df("`a.b`") // succeeds > {code} > But {{schema}} is inconsistent: > {code} > df.schema("a.b") // succeeds > df.schema("`a.b`") // fails > {code} > "fails" produces error messages like: > {code} > org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input > columns: [a.b, id];; > 'Project ['a.b] > +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517] >+- LocalRelation [_1#1511, _2#1512] > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) > at > org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1121) > at org.apache.spark.sql.Dataset.select(D
[jira] [Commented] (SPARK-19416) Dataset.schema is inconsistent with Dataset in handling columns with periods
[ https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15859401#comment-15859401 ] Thomas Sebastian commented on SPARK-19416: -- [~josephkb] If I understand correctly the consistent behaviour should be as follows: The statement df.schema("`a.b`") should succeed and df.schema("a.b") should fail. Please confirm. + [~jayadevan.m] > Dataset.schema is inconsistent with Dataset in handling columns with periods > > > Key: SPARK-19416 > URL: https://issues.apache.org/jira/browse/SPARK-19416 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0 >Reporter: Joseph K. Bradley >Priority: Minor > > When you have a DataFrame with a column with a period in its name, the API is > inconsistent about how to quote the column name. > Here's a reproduction: > {code} > import org.apache.spark.sql.functions.col > val rows = Seq( > ("foo", 1), > ("bar", 2) > ) > val df = spark.createDataFrame(rows).toDF("a.b", "id") > {code} > These methods are all consistent: > {code} > df.select("a.b") // fails > df.select("`a.b`") // succeeds > df.select(col("a.b")) // fails > df.select(col("`a.b`")) // succeeds > df("a.b") // fails > df("`a.b`") // succeeds > {code} > But {{schema}} is inconsistent: > {code} > df.schema("a.b") // succeeds > df.schema("`a.b`") // fails > {code} > "fails" produces error messages like: > {code} > org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input > columns: [a.b, id];; > 'Project ['a.b] > +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517] >+- LocalRelation [_1#1511, _2#1512] > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) > at > org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1121) > at org.apache.spark.
[jira] [Commented] (SPARK-19416) Dataset.schema is inconsistent with Dataset in handling columns with periods
[ https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15852876#comment-15852876 ] koert kuipers commented on SPARK-19416: --- would it be simpler to ban columns with a period in the name? > Dataset.schema is inconsistent with Dataset in handling columns with periods > > > Key: SPARK-19416 > URL: https://issues.apache.org/jira/browse/SPARK-19416 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0 >Reporter: Joseph K. Bradley >Priority: Minor > > When you have a DataFrame with a column with a period in its name, the API is > inconsistent about how to quote the column name. > Here's a reproduction: > {code} > import org.apache.spark.sql.functions.col > val rows = Seq( > ("foo", 1), > ("bar", 2) > ) > val df = spark.createDataFrame(rows).toDF("a.b", "id") > {code} > These methods are all consistent: > {code} > df.select("a.b") // fails > df.select("`a.b`") // succeeds > df.select(col("a.b")) // fails > df.select(col("`a.b`")) // succeeds > df("a.b") // fails > df("`a.b`") // succeeds > {code} > But {{schema}} is inconsistent: > {code} > df.schema("a.b") // succeeds > df.schema("`a.b`") // fails > {code} > "fails" produces error messages like: > {code} > org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input > columns: [a.b, id];; > 'Project ['a.b] > +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517] >+- LocalRelation [_1#1511, _2#1512] > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) > at > org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1121) > at org.apache.spark.sql.Dataset.select(Dataset.scala:1139) > at > line9667c6d14e79417280e5882aa52e0de727.$read$$iw$$iw$$iw$$iw.(:34) > at > line9667c6d14