[obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação

2004-10-20 Thread Domingos Jr.

Não entendi. Se f é uma função bem comportada no IR^2, porque 
ela não seria integrável? Pelo pouco que eu li, qualquer 
função contínua nos reais (usando a medida de Lebesgue) é 
integravel.
   

Em que sentido f seria bem comportada? Ela certamente não é contínua.
 

Depois de falar com um professor meu do IME eu acho que entendi no que 
eu errei. Já vou avisando para ter paciência já que meus conhecimentos 
sobre integral de Lebesgue tem medida nula...

Inicialmente eu pensei em definir f(x, y) para todo R^2. Algo como f(x, 
y) = exp{-x^2 - y^2} que é positiva para todo x, y e tem volume finito 
(por sinal, o volume sobre todo R^2 é PI!). Sem dúvida f é bem 
comportada. A idéia então era integrar uma função bem comportada num 
conjunto muito mal comportado! Eu achava que com integrais de Lebesgue 
isso seria sempre possível, mas talvez meu argumento falhe pois só 
depois que esse meu professor falou que eu percebi que é necessario que 
o conjunto seja mensurável para que eu aplique a minha idéia. Parece 
então que se A é mensurável então A não pode satisfazer as 
características enunciadas e isso pode ser demonstrado pelo meu 
argumento da integral, certo?


Vou ser mais específico na minha fonte de leitura... eu li a 
descrição do teorema de Tonelli em
http://planetmath.org/encyclopedia/TonellisTheorem.html
   

Nas hipóteses do teorema (no site que você indicou) aparece
que a função deve estar em L^+(X x Y). Esta hipótese não vale
em geral para a função que você construiu.
 

O problema é que não podemos afirmar que A é mensurável e portanto f 
pode ser bem comportada no R^2 mas não integrável em A, certo?

Abraços.
=
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=


Re: [obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação

2004-10-21 Thread Nicolau C. Saldanha
On Wed, Oct 20, 2004 at 06:46:41PM -0300, Domingos Jr. wrote:
> >
> >
> >>Não entendi. Se f é uma função bem comportada no IR^2, porque 
> >>ela não seria integrável? Pelo pouco que eu li, qualquer 
> >>função contínua nos reais (usando a medida de Lebesgue) é 
> >>integravel.
> >>   
> >>
> >
> >Em que sentido f seria bem comportada? Ela certamente não é contínua.
> > 
> >
> 
> Depois de falar com um professor meu do IME eu acho que entendi no que 
> eu errei. Já vou avisando para ter paciência já que meus conhecimentos 
> sobre integral de Lebesgue tem medida nula...
> 
> Inicialmente eu pensei em definir f(x, y) para todo R^2. Algo como f(x, 
> y) = exp{-x^2 - y^2} que é positiva para todo x, y e tem volume finito 
> (por sinal, o volume sobre todo R^2 é PI!). Sem dúvida f é bem 
> comportada. A idéia então era integrar uma função bem comportada num 
> conjunto muito mal comportado! Eu achava que com integrais de Lebesgue 
> isso seria sempre possível, mas talvez meu argumento falhe pois só 
> depois que esse meu professor falou que eu percebi que é necessario que 
> o conjunto seja mensurável para que eu aplique a minha idéia. Parece 
> então que se A é mensurável então A não pode satisfazer as 
> características enunciadas e isso pode ser demonstrado pelo meu 
> argumento da integral, certo?

Correto: o seu argumento prova que não existe
um conjunto A Lebesgue-mensurável satisfazendo
as condições do problema.

> >>Vou ser mais específico na minha fonte de leitura... eu li a 
> >>descrição do teorema de Tonelli em
> >>http://planetmath.org/encyclopedia/TonellisTheorem.html
> >>   
> >>
> >
> >Nas hipóteses do teorema (no site que você indicou) aparece
> >que a função deve estar em L^+(X x Y). Esta hipótese não vale
> >em geral para a função que você construiu.
> >
> > 
> >
> O problema é que não podemos afirmar que A é mensurável e portanto f 
> pode ser bem comportada no R^2 mas não integrável em A, certo?

Exatamente: não faz sentido integrar *nenhuma* função sobre um domínio
que não seja mensurável.

[]s, N.
=
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=


[obm-l] Re:[obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação

2004-10-20 Thread claudio.buffara

 




De:
[EMAIL PROTECTED]




Para:
[EMAIL PROTECTED]




Cópia:





Data:
Wed, 20 Oct 2004 18:46:41 -0300




Assunto:
[obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação




 
 
> >
> 
> Depois de falar com um professor meu do IME eu acho que entendi no que 
> eu errei. Já vou avisando para ter paciência já que meus conhecimentos 
> sobre integral de Lebesgue tem medida nula...
> 
Isso não quer dizer nada. Eles podem ser não-enumeráveis mesmo assim...
 
 

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação

2004-10-21 Thread Domingos Jr.
Nicolau C. Saldanha wrote:
On Wed, Oct 20, 2004 at 06:46:41PM -0300, Domingos Jr. wrote:
 

 

Não entendi. Se f é uma função bem comportada no IR^2, porque 
ela não seria integrável? Pelo pouco que eu li, qualquer 
função contínua nos reais (usando a medida de Lebesgue) é 
integravel.
 

   

Em que sentido f seria bem comportada? Ela certamente não é contínua.
 

Depois de falar com um professor meu do IME eu acho que entendi no que 
eu errei. Já vou avisando para ter paciência já que meus conhecimentos 
sobre integral de Lebesgue tem medida nula...

Inicialmente eu pensei em definir f(x, y) para todo R^2. Algo como f(x, 
y) = exp{-x^2 - y^2} que é positiva para todo x, y e tem volume finito 
(por sinal, o volume sobre todo R^2 é PI!). Sem dúvida f é bem 
comportada. A idéia então era integrar uma função bem comportada num 
conjunto muito mal comportado! Eu achava que com integrais de Lebesgue 
isso seria sempre possível, mas talvez meu argumento falhe pois só 
depois que esse meu professor falou que eu percebi que é necessario que 
o conjunto seja mensurável para que eu aplique a minha idéia. Parece 
então que se A é mensurável então A não pode satisfazer as 
características enunciadas e isso pode ser demonstrado pelo meu 
argumento da integral, certo?
   

Correto: o seu argumento prova que não existe
um conjunto A Lebesgue-mensurável satisfazendo
as condições do problema.
 

para concluir, então... existem mais conjuntos Lebesgue-mensuráveis do 
que conjuntos não-Lebesgue-mensuráveis?

e quanto ao problema 5 da OBM? eu acho que consegui demonstrar que o 
limite ficava entre duas constantes para qualquer valor de m... talvez 
eu tenha errado um pouco na minha estimativa por que o limite ficou 
entre 2 e 4 e eu acho que na verdade 2 é o máximo que o limite assume 
(será que 2 é sempre o limite?!), mas isso deve ter sido algum erro de 
conta mesmo.

Exatamente: não faz sentido integrar *nenhuma* função sobre um domínio
que não seja mensurável.
[]s, N.
ok!
[ ]'s
=
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=


Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] OBM2004 - NIVEL U - Problema 2 - Uma variação

2004-10-22 Thread Nicolau C. Saldanha
On Thu, Oct 21, 2004 at 07:27:29PM -0300, Domingos Jr. wrote:
> >Correto: o seu argumento prova que não existe
> >um conjunto A Lebesgue-mensurável satisfazendo
> >as condições do problema.
> para concluir, então... existem mais conjuntos Lebesgue-mensuráveis do 
> que conjuntos não-Lebesgue-mensuráveis?

Quase todo conjunto que aparece em aplicações é Lebesgue mensurável.
Por outro lado, o conjunto dos borelianos tem cardinalidade c (a de R)
e o conjunto de todos os subconjuntos de R tem cardinalidade 2^c
então em um sentido mais abstrato quase todo conjunto é não mensurável.
 
> e quanto ao problema 5 da OBM? eu acho que consegui demonstrar que o 
> limite ficava entre duas constantes para qualquer valor de m... talvez 
> eu tenha errado um pouco na minha estimativa por que o limite ficou 
> entre 2 e 4 e eu acho que na verdade 2 é o máximo que o limite assume 
> (será que 2 é sempre o limite?!), mas isso deve ter sido algum erro de 
> conta mesmo.

O do Arnalde e Bernaldo? O limite sempre existe mas o valor depende de m.
A resposta é 2 se m for par, senão o valor é outro, próximo de 2,
tendendo a 2 quando m tende a infinito mas diferente de 2.

[]s, N.

=
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=