Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-22 Thread Eno Thereska
Answers inline: 

> On 22 Jun 2017, at 03:26, Guozhang Wang  wrote:
> 
> Thanks for the updated KIP, some more comments:
> 
> 1.The config name is "default.deserialization.exception.handler" while the
> interface class name is "RecordExceptionHandler", which is more general
> than the intended purpose. Could we rename the class name accordingly?

Sure.


> 
> 2. Could you describe the full implementation of "DefaultExceptionHandler",
> currently it is not clear to me how it is implemented with the configured
> value.
> 
> In addition, I think we do not need to include an additional
> "DEFAULT_DESERIALIZATION_EXCEPTION_RESPONSE_CONFIG" as the configure()
> function is mainly used for users to pass any customized parameters that is
> out of the Streams library; plus adding such additional config sounds
> over-complicated for a default exception handler. Instead I'd suggest we
> just provide two handlers (or three if people feel strong about the
> LogAndThresholdExceptionHandler), one for FailOnExceptionHandler and one
> for LogAndContinueOnExceptionHandler. And we can set
> LogAndContinueOnExceptionHandler
> by default.
> 

That's what I had originally. Jay mentioned he preferred one default class, 
with config options.
So with that approach, you'd have 2 config options, one for failing, one for 
continuing, and the one
exception handler would take those options during it's configure() call.

After checking the other exception handlers in the code, I might revert back to 
what I originally had (2 default handlers) 
as Guozhang also re-suggests, but still have the interface extend Configurable. 
Guozhang, you ok with that? In that case
there is no need for the response config option.

Thanks
Eno


> 
> Guozhang
> 
> 
> 
> 
> 
> 
> 
> 
> On Wed, Jun 21, 2017 at 1:39 AM, Eno Thereska  >
> wrote:
> 
>> Thanks Guozhang,
>> 
>> I’ve updated the KIP and hopefully addressed all the comments so far. In
>> the process also changed the name of the KIP to reflect its scope better:
>> https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+ 
>> 
>> deserialization+exception+handlers > 
>> confluence/display/KAFKA/KIP-161:+streams+deserialization+
>> exception+handlers>
>> 
>> Any other feedback appreciated, otherwise I’ll start the vote soon.
>> 
>> Thanks
>> Eno
>> 
>>> On Jun 12, 2017, at 6:28 AM, Guozhang Wang  wrote:
>>> 
>>> Eno, Thanks for bringing this proposal up and sorry for getting late on
>>> this. Here are my two cents:
>>> 
>>> 1. First some meta comments regarding "fail fast" v.s. "making
>> progress". I
>>> agree that in general we should better "enforce user to do the right
>> thing"
>>> in system design, but we also need to keep in mind that Kafka is a
>>> multi-tenant system, i.e. from a Streams app's pov you probably would not
>>> control the whole streaming processing pipeline end-to-end. E.g. Your
>> input
>>> data may not be controlled by yourself; it could be written by another
>> app,
>>> or another team in your company, or even a different organization, and if
>>> an error happens maybe you cannot fix "to do the right thing" just by
>>> yourself in time. In such an environment I think it is important to leave
>>> the door open to let users be more resilient. So I find the current
>>> proposal which does leave the door open for either fail-fast or make
>>> progress quite reasonable.
>>> 
>>> 2. On the other hand, if the question is whether we should provide a
>>> built-in "send to bad queue" handler from the library, I think that might
>>> be an overkill: with some tweaks (see my detailed comments below) on the
>>> API we can allow users to implement such handlers pretty easily. In
>> fact, I
>>> feel even "LogAndThresholdExceptionHandler" is not necessary as a
>> built-in
>>> handler, as it would then require users to specify the threshold via
>>> configs, etc. I think letting people provide such "eco-libraries" may be
>>> better.
>>> 
>>> 3. Regarding the CRC error: today we validate CRC on both the broker end
>>> upon receiving produce requests and on consumer end upon receiving fetch
>>> responses; and if the CRC validation fails in the former case it would
>> not
>>> be appended to the broker logs. So if we do see a CRC failure on the
>>> consumer side it has to be that either we have a flipped bit on the
>> broker
>>> disks or over the wire. For the first case it is fatal while for the
>> second
>>> it is retriable. Unfortunately we cannot tell which case it is when
>> seeing
>>> CRC validation failures. But in either case, just skipping and making
>>> progress seems not a good choice here, and hence I would personally
>> exclude
>>> these errors from the general serde errors to NOT leave the door open of
>>> making progress.
>>> 
>>> Currently such errors are thrown as KafkaException that wraps an
>>> InvalidRecordExcepti

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-21 Thread Guozhang Wang
Thanks for the updated KIP, some more comments:

1.The config name is "default.deserialization.exception.handler" while the
interface class name is "RecordExceptionHandler", which is more general
than the intended purpose. Could we rename the class name accordingly?

2. Could you describe the full implementation of "DefaultExceptionHandler",
currently it is not clear to me how it is implemented with the configured
value.

In addition, I think we do not need to include an additional
"DEFAULT_DESERIALIZATION_EXCEPTION_RESPONSE_CONFIG" as the configure()
function is mainly used for users to pass any customized parameters that is
out of the Streams library; plus adding such additional config sounds
over-complicated for a default exception handler. Instead I'd suggest we
just provide two handlers (or three if people feel strong about the
LogAndThresholdExceptionHandler), one for FailOnExceptionHandler and one
for LogAndContinueOnExceptionHandler. And we can set
LogAndContinueOnExceptionHandler
by default.


Guozhang








On Wed, Jun 21, 2017 at 1:39 AM, Eno Thereska 
wrote:

> Thanks Guozhang,
>
> I’ve updated the KIP and hopefully addressed all the comments so far. In
> the process also changed the name of the KIP to reflect its scope better:
> https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+
> deserialization+exception+handlers  confluence/display/KAFKA/KIP-161:+streams+deserialization+
> exception+handlers>
>
> Any other feedback appreciated, otherwise I’ll start the vote soon.
>
> Thanks
> Eno
>
> > On Jun 12, 2017, at 6:28 AM, Guozhang Wang  wrote:
> >
> > Eno, Thanks for bringing this proposal up and sorry for getting late on
> > this. Here are my two cents:
> >
> > 1. First some meta comments regarding "fail fast" v.s. "making
> progress". I
> > agree that in general we should better "enforce user to do the right
> thing"
> > in system design, but we also need to keep in mind that Kafka is a
> > multi-tenant system, i.e. from a Streams app's pov you probably would not
> > control the whole streaming processing pipeline end-to-end. E.g. Your
> input
> > data may not be controlled by yourself; it could be written by another
> app,
> > or another team in your company, or even a different organization, and if
> > an error happens maybe you cannot fix "to do the right thing" just by
> > yourself in time. In such an environment I think it is important to leave
> > the door open to let users be more resilient. So I find the current
> > proposal which does leave the door open for either fail-fast or make
> > progress quite reasonable.
> >
> > 2. On the other hand, if the question is whether we should provide a
> > built-in "send to bad queue" handler from the library, I think that might
> > be an overkill: with some tweaks (see my detailed comments below) on the
> > API we can allow users to implement such handlers pretty easily. In
> fact, I
> > feel even "LogAndThresholdExceptionHandler" is not necessary as a
> built-in
> > handler, as it would then require users to specify the threshold via
> > configs, etc. I think letting people provide such "eco-libraries" may be
> > better.
> >
> > 3. Regarding the CRC error: today we validate CRC on both the broker end
> > upon receiving produce requests and on consumer end upon receiving fetch
> > responses; and if the CRC validation fails in the former case it would
> not
> > be appended to the broker logs. So if we do see a CRC failure on the
> > consumer side it has to be that either we have a flipped bit on the
> broker
> > disks or over the wire. For the first case it is fatal while for the
> second
> > it is retriable. Unfortunately we cannot tell which case it is when
> seeing
> > CRC validation failures. But in either case, just skipping and making
> > progress seems not a good choice here, and hence I would personally
> exclude
> > these errors from the general serde errors to NOT leave the door open of
> > making progress.
> >
> > Currently such errors are thrown as KafkaException that wraps an
> > InvalidRecordException, which may be too general and we could consider
> just
> > throwing the InvalidRecordException directly. But that could be an
> > orthogonal discussion if we agrees that CRC failures should not be
> > considered in this KIP.
> >
> > 
> >
> > Now some detailed comments:
> >
> > 4. Could we consider adding the processor context in the handle()
> function
> > as well? This context will be wrapping as the source node that is about
> to
> > process the record. This could expose more info like which task / source
> > node sees this error, which timestamp of the message, etc, and also can
> > allow users to implement their handlers by exposing some metrics, by
> > calling context.forward() to implement the "send to bad queue" behavior
> etc.
> >
> > 5. Could you add the string name of
> > StreamsConfig.DEFAULT_RECORD_EXCEPTION_HANDLER as well in the KIP?
> > Personally I find "defaul

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-21 Thread Eno Thereska
Thanks Guozhang,

I’ve updated the KIP and hopefully addressed all the comments so far. In the 
process also changed the name of the KIP to reflect its scope better: 
https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+deserialization+exception+handlers
 


Any other feedback appreciated, otherwise I’ll start the vote soon.

Thanks
Eno

> On Jun 12, 2017, at 6:28 AM, Guozhang Wang  wrote:
> 
> Eno, Thanks for bringing this proposal up and sorry for getting late on
> this. Here are my two cents:
> 
> 1. First some meta comments regarding "fail fast" v.s. "making progress". I
> agree that in general we should better "enforce user to do the right thing"
> in system design, but we also need to keep in mind that Kafka is a
> multi-tenant system, i.e. from a Streams app's pov you probably would not
> control the whole streaming processing pipeline end-to-end. E.g. Your input
> data may not be controlled by yourself; it could be written by another app,
> or another team in your company, or even a different organization, and if
> an error happens maybe you cannot fix "to do the right thing" just by
> yourself in time. In such an environment I think it is important to leave
> the door open to let users be more resilient. So I find the current
> proposal which does leave the door open for either fail-fast or make
> progress quite reasonable.
> 
> 2. On the other hand, if the question is whether we should provide a
> built-in "send to bad queue" handler from the library, I think that might
> be an overkill: with some tweaks (see my detailed comments below) on the
> API we can allow users to implement such handlers pretty easily. In fact, I
> feel even "LogAndThresholdExceptionHandler" is not necessary as a built-in
> handler, as it would then require users to specify the threshold via
> configs, etc. I think letting people provide such "eco-libraries" may be
> better.
> 
> 3. Regarding the CRC error: today we validate CRC on both the broker end
> upon receiving produce requests and on consumer end upon receiving fetch
> responses; and if the CRC validation fails in the former case it would not
> be appended to the broker logs. So if we do see a CRC failure on the
> consumer side it has to be that either we have a flipped bit on the broker
> disks or over the wire. For the first case it is fatal while for the second
> it is retriable. Unfortunately we cannot tell which case it is when seeing
> CRC validation failures. But in either case, just skipping and making
> progress seems not a good choice here, and hence I would personally exclude
> these errors from the general serde errors to NOT leave the door open of
> making progress.
> 
> Currently such errors are thrown as KafkaException that wraps an
> InvalidRecordException, which may be too general and we could consider just
> throwing the InvalidRecordException directly. But that could be an
> orthogonal discussion if we agrees that CRC failures should not be
> considered in this KIP.
> 
> 
> 
> Now some detailed comments:
> 
> 4. Could we consider adding the processor context in the handle() function
> as well? This context will be wrapping as the source node that is about to
> process the record. This could expose more info like which task / source
> node sees this error, which timestamp of the message, etc, and also can
> allow users to implement their handlers by exposing some metrics, by
> calling context.forward() to implement the "send to bad queue" behavior etc.
> 
> 5. Could you add the string name of
> StreamsConfig.DEFAULT_RECORD_EXCEPTION_HANDLER as well in the KIP?
> Personally I find "default" prefix a bit misleading since we do not allow
> users to override it per-node yet. But I'm okay either way as I can see we
> may extend it in the future and probably would like to not rename the
> config again. Also from the experience of `default partitioner` and
> `default timestamp extractor` we may also make sure that the passed in
> object can be either a string "class name" or a class object?
> 
> 
> Guozhang
> 
> 
> On Wed, Jun 7, 2017 at 2:16 PM, Jan Filipiak 
> wrote:
> 
>> Hi Eno,
>> 
>> On 07.06.2017 22:49, Eno Thereska wrote:
>> 
>>> Comments inline:
>>> 
>>> On 5 Jun 2017, at 18:19, Jan Filipiak  wrote:
 
 Hi
 
 just my few thoughts
 
 On 05.06.2017 11:44, Eno Thereska wrote:
 
> Hi there,
> 
> Sorry for the late reply, I was out this past week. Looks like good
> progress was made with the discussions either way. Let me recap a couple 
> of
> points I saw into one big reply:
> 
> 1. Jan mentioned CRC errors. I think this is a good point. As these
> happen in Kafka, before Kafka Streams gets a chance to inspect anything,
> I'd like to hear the opinion of more Kafka folks like Ismael or Jason on
> this one. Currently the documentation is not great 

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-07 Thread Jan Filipiak

Hi Eno,

On 07.06.2017 22:49, Eno Thereska wrote:

Comments inline:


On 5 Jun 2017, at 18:19, Jan Filipiak  wrote:

Hi

just my few thoughts

On 05.06.2017 11:44, Eno Thereska wrote:

Hi there,

Sorry for the late reply, I was out this past week. Looks like good progress 
was made with the discussions either way. Let me recap a couple of points I saw 
into one big reply:

1. Jan mentioned CRC errors. I think this is a good point. As these happen in 
Kafka, before Kafka Streams gets a chance to inspect anything, I'd like to hear 
the opinion of more Kafka folks like Ismael or Jason on this one. Currently the 
documentation is not great with what to do once a CRC check has failed. From 
looking at the code, it looks like the client gets a KafkaException (bubbled up 
from the fetcher) and currently we in streams catch this as part of poll() and 
fail. It might be advantageous to treat CRC handling in a similar way to 
serialisation handling (e.g., have the option to fail/skip). Let's see what the 
other folks say. Worst-case we can do a separate KIP for that if it proved too 
hard to do in one go.

there is no reasonable way to "skip" a crc error. How can you know the length 
you read was anything reasonable? you might be completely lost inside your response.

On the client side, every record received is checked for validity. As it 
happens, if the CRC check fails the exception is wrapped with a KafkaException 
that is thrown all the way to poll(). Assuming we change that and poll() throws 
a CRC exception, I was thinking we could treat it similarly to a deserialize 
exception and pass it to the exception handler to decide what to do. Default 
would be to fail. This might need a Kafka KIP btw and can be done separately 
from this KIP, but Jan, would you find this useful?
I don't think so. IMO you can not reasonably continue parsing when the 
checksum of a message is not correct. If you are not sure you got the 
correct length, how can you be sure to find the next record? I would 
always straight fail in all cases. Its to hard for me to understand why 
one would try to continue. I mentioned CRC's because thats the only bad 
pills I ever saw so far. But I am happy that it just stopped and I could 
check what was going on. This will also be invasive in the client code then.


If you ask me, I am always going to vote for "grind to halt" let the 
developers see what happened and let them fix it. It helps building good 
kafka experiences and better software and architectures. For me this is: 
"force the user todo the right thing". 
https://youtu.be/aAb7hSCtvGw?t=374 eg. not letting unexpected input slip 
by.  Letting unexpected input slip by is what bought us 15+years of war 
of all sorts of ingestion attacks. I don't even dare to estimate how 
many missingrecords-search-teams going be formed, maybe some hackerone 
for stream apps :D


Best Jan




At a minimum, handling this type of exception will need to involve the 
exactly-once (EoS) logic. We'd still allow the option of failing or skipping, 
but EoS would need to clean up by rolling back all the side effects from the 
processing so far. Matthias, how does this sound?

Eos will not help the record might be 5,6 repartitions down into the topology. 
I haven't followed but I pray you made EoS optional! We don't need this and we 
don't want this and we will turn it off if it comes. So I wouldn't recommend 
relying on it. The option to turn it off is better than forcing it and still 
beeing unable to rollback badpills (as explained before)

Yeah as Matthias mentioned EoS is optional.

Thanks,
Eno



6. Will add an end-to-end example as Michael suggested.

Thanks
Eno




On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:

What I don't understand is this:


 From there on its the easiest way forward: fix, redeploy, start => done

If you have many producers that work fine and a new "bad" producer
starts up and writes bad data into your input topic, your Streams app
dies but all your producers, including the bad one, keep writing.

Thus, how would you fix this, as you cannot "remove" the corrupted date
from the topic? It might take some time to identify the root cause and
stop the bad producer. Up to this point you get good and bad data into
your Streams input topic. If Streams app in not able to skip over those
bad records, how would you get all the good data from the topic? Not
saying it's not possible, but it's extra work copying the data with a
new non-Streams consumer-producer-app into a new topic and than feed
your Streams app from this new topic -- you also need to update all your
upstream producers to write to the new topic.

Thus, if you want to fail fast, you can still do this. And after you
detected and fixed the bad producer you might just reconfigure your app
to skip bad records until it reaches the good part of the data.
Afterwards, you could redeploy with fail-fast again.


Thus, for this pattern, I actually don't see any reason why to stop the
Streams ap

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-07 Thread Eno Thereska
Comments inline:

> On 5 Jun 2017, at 18:19, Jan Filipiak  wrote:
> 
> Hi
> 
> just my few thoughts
> 
> On 05.06.2017 11:44, Eno Thereska wrote:
>> Hi there,
>> 
>> Sorry for the late reply, I was out this past week. Looks like good progress 
>> was made with the discussions either way. Let me recap a couple of points I 
>> saw into one big reply:
>> 
>> 1. Jan mentioned CRC errors. I think this is a good point. As these happen 
>> in Kafka, before Kafka Streams gets a chance to inspect anything, I'd like 
>> to hear the opinion of more Kafka folks like Ismael or Jason on this one. 
>> Currently the documentation is not great with what to do once a CRC check 
>> has failed. From looking at the code, it looks like the client gets a 
>> KafkaException (bubbled up from the fetcher) and currently we in streams 
>> catch this as part of poll() and fail. It might be advantageous to treat CRC 
>> handling in a similar way to serialisation handling (e.g., have the option 
>> to fail/skip). Let's see what the other folks say. Worst-case we can do a 
>> separate KIP for that if it proved too hard to do in one go.
> there is no reasonable way to "skip" a crc error. How can you know the length 
> you read was anything reasonable? you might be completely lost inside your 
> response.

On the client side, every record received is checked for validity. As it 
happens, if the CRC check fails the exception is wrapped with a KafkaException 
that is thrown all the way to poll(). Assuming we change that and poll() throws 
a CRC exception, I was thinking we could treat it similarly to a deserialize 
exception and pass it to the exception handler to decide what to do. Default 
would be to fail. This might need a Kafka KIP btw and can be done separately 
from this KIP, but Jan, would you find this useful?

>> 
>> 
>> At a minimum, handling this type of exception will need to involve the 
>> exactly-once (EoS) logic. We'd still allow the option of failing or 
>> skipping, but EoS would need to clean up by rolling back all the side 
>> effects from the processing so far. Matthias, how does this sound?
> Eos will not help the record might be 5,6 repartitions down into the 
> topology. I haven't followed but I pray you made EoS optional! We don't need 
> this and we don't want this and we will turn it off if it comes. So I 
> wouldn't recommend relying on it. The option to turn it off is better than 
> forcing it and still beeing unable to rollback badpills (as explained before)
>> 

Yeah as Matthias mentioned EoS is optional.

Thanks,
Eno


>> 6. Will add an end-to-end example as Michael suggested.
>> 
>> Thanks
>> Eno
>> 
>> 
>> 
>>> On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:
>>> 
>>> What I don't understand is this:
>>> 
 From there on its the easiest way forward: fix, redeploy, start => done
>>> If you have many producers that work fine and a new "bad" producer
>>> starts up and writes bad data into your input topic, your Streams app
>>> dies but all your producers, including the bad one, keep writing.
>>> 
>>> Thus, how would you fix this, as you cannot "remove" the corrupted date
>>> from the topic? It might take some time to identify the root cause and
>>> stop the bad producer. Up to this point you get good and bad data into
>>> your Streams input topic. If Streams app in not able to skip over those
>>> bad records, how would you get all the good data from the topic? Not
>>> saying it's not possible, but it's extra work copying the data with a
>>> new non-Streams consumer-producer-app into a new topic and than feed
>>> your Streams app from this new topic -- you also need to update all your
>>> upstream producers to write to the new topic.
>>> 
>>> Thus, if you want to fail fast, you can still do this. And after you
>>> detected and fixed the bad producer you might just reconfigure your app
>>> to skip bad records until it reaches the good part of the data.
>>> Afterwards, you could redeploy with fail-fast again.
>>> 
>>> 
>>> Thus, for this pattern, I actually don't see any reason why to stop the
>>> Streams app at all. If you have a callback, and use the callback to
>>> raise an alert (and maybe get the bad data into a bad record queue), it
>>> will not take longer to identify and stop the "bad" producer. But for
>>> this case, you have zero downtime for your Streams app.
>>> 
>>> This seems to be much simpler. Or do I miss anything?
>>> 
>>> 
>>> Having said this, I agree that the "threshold based callback" might be
>>> questionable. But as you argue for strict "fail-fast", I want to argue
>>> that this must not always be the best pattern to apply and that the
>>> overall KIP idea is super useful from my point of view.
>>> 
>>> 
>>> -Matthias
>>> 
>>> 
>>> On 6/3/17 11:57 AM, Jan Filipiak wrote:
 Could not agree more!
 
 But then I think the easiest is still: print exception and die.
 From there on its the easiest way forward: fix, redeploy, start => done
 
 All the other ways to recover

Fwd: Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-05 Thread Matthias J. Sax
Should go to dev list, too.


 Forwarded Message 
Subject: Re: [DISCUSS]: KIP-161: streams record processing exception
handlers
Date: Mon, 5 Jun 2017 19:19:42 +0200
From: Jan Filipiak 
Reply-To: users@kafka.apache.org
To: users@kafka.apache.org

Hi

just my few thoughts

On 05.06.2017 11:44, Eno Thereska wrote:
> Hi there,
>
> Sorry for the late reply, I was out this past week. Looks like good progress 
> was made with the discussions either way. Let me recap a couple of points I 
> saw into one big reply:
>
> 1. Jan mentioned CRC errors. I think this is a good point. As these happen in 
> Kafka, before Kafka Streams gets a chance to inspect anything, I'd like to 
> hear the opinion of more Kafka folks like Ismael or Jason on this one. 
> Currently the documentation is not great with what to do once a CRC check has 
> failed. From looking at the code, it looks like the client gets a 
> KafkaException (bubbled up from the fetcher) and currently we in streams 
> catch this as part of poll() and fail. It might be advantageous to treat CRC 
> handling in a similar way to serialisation handling (e.g., have the option to 
> fail/skip). Let's see what the other folks say. Worst-case we can do a 
> separate KIP for that if it proved too hard to do in one go.
there is no reasonable way to "skip" a crc error. How can you know the
length you read was anything reasonable? you might be completely lost
inside your response.
> 2. Damian has convinced me that the KIP should just be for deserialisation 
> from the network, not from local state store DBs. For the latter we'll follow 
> the current way of failing since the DB is likely corrupt.
>
> 3. Dead letter queue option. There was never any intention here to do 
> anything super clever like attempt to re-inject the failed records from the 
> dead letter queue back into the system. Reasoning about when that'd be useful 
> in light of all sorts of semantic breakings would be hard (arguably 
> impossible). The idea was to just have a place to have all these dead records 
> to help with subsequent debugging. We could also just log a whole bunch of 
> info for a poison pill record and not have a dead letter queue at all. 
> Perhaps that's a better, simpler, starting point.
+1
>
> 4. Agree with Jay on style, a DefaultHandler with some config options. Will 
> add options to KIP. Also as part of this let's remove the threshold logger 
> since it gets complex and arguably the ROI is low.
>
> 5. Jay's JSON example, where serialisation passes but the JSON message 
> doesn't have the expected fields, is an interesting one. It's a bit 
> complicated to handle this in the middle of processing. For example, some 
> operators in the DAG might actually find the needed JSON fields and make 
> progress, but other operators, for the same record, might not find their 
> fields and will throw an exception.
>
> At a minimum, handling this type of exception will need to involve the 
> exactly-once (EoS) logic. We'd still allow the option of failing or skipping, 
> but EoS would need to clean up by rolling back all the side effects from the 
> processing so far. Matthias, how does this sound?
Eos will not help the record might be 5,6 repartitions down into the
topology. I haven't followed but I pray you made EoS optional! We don't
need this and we don't want this and we will turn it off if it comes. So
I wouldn't recommend relying on it. The option to turn it off is better
than forcing it and still beeing unable to rollback badpills (as
explained before)
>
> 6. Will add an end-to-end example as Michael suggested.
>
> Thanks
> Eno
>
>
>
>> On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:
>>
>> What I don't understand is this:
>>
>>>  From there on its the easiest way forward: fix, redeploy, start => done
>> If you have many producers that work fine and a new "bad" producer
>> starts up and writes bad data into your input topic, your Streams app
>> dies but all your producers, including the bad one, keep writing.
>>
>> Thus, how would you fix this, as you cannot "remove" the corrupted date
>> from the topic? It might take some time to identify the root cause and
>> stop the bad producer. Up to this point you get good and bad data into
>> your Streams input topic. If Streams app in not able to skip over those
>> bad records, how would you get all the good data from the topic? Not
>> saying it's not possible, but it's extra work copying the data with a
>> new non-Streams consumer-producer-app into a new topic and than feed
>> your Streams app from this new topic -- you also need to update all your
>> up

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-05 Thread Matthias J. Sax
@Jan: EOS will be turned off by default in 0.11. I assume, we might
enable it by default in a later release but the will be always a config
to disable it.


-Matthias

On 6/5/17 10:19 AM, Jan Filipiak wrote:
> Hi
> 
> just my few thoughts
> 
> On 05.06.2017 11:44, Eno Thereska wrote:
>> Hi there,
>>
>> Sorry for the late reply, I was out this past week. Looks like good
>> progress was made with the discussions either way. Let me recap a
>> couple of points I saw into one big reply:
>>
>> 1. Jan mentioned CRC errors. I think this is a good point. As these
>> happen in Kafka, before Kafka Streams gets a chance to inspect
>> anything, I'd like to hear the opinion of more Kafka folks like Ismael
>> or Jason on this one. Currently the documentation is not great with
>> what to do once a CRC check has failed. From looking at the code, it
>> looks like the client gets a KafkaException (bubbled up from the
>> fetcher) and currently we in streams catch this as part of poll() and
>> fail. It might be advantageous to treat CRC handling in a similar way
>> to serialisation handling (e.g., have the option to fail/skip). Let's
>> see what the other folks say. Worst-case we can do a separate KIP for
>> that if it proved too hard to do in one go.
> there is no reasonable way to "skip" a crc error. How can you know the
> length you read was anything reasonable? you might be completely lost
> inside your response.
>> 2. Damian has convinced me that the KIP should just be for
>> deserialisation from the network, not from local state store DBs. For
>> the latter we'll follow the current way of failing since the DB is
>> likely corrupt.
>>
>> 3. Dead letter queue option. There was never any intention here to do
>> anything super clever like attempt to re-inject the failed records
>> from the dead letter queue back into the system. Reasoning about when
>> that'd be useful in light of all sorts of semantic breakings would be
>> hard (arguably impossible). The idea was to just have a place to have
>> all these dead records to help with subsequent debugging. We could
>> also just log a whole bunch of info for a poison pill record and not
>> have a dead letter queue at all. Perhaps that's a better, simpler,
>> starting point.
> +1
>>
>> 4. Agree with Jay on style, a DefaultHandler with some config options.
>> Will add options to KIP. Also as part of this let's remove the
>> threshold logger since it gets complex and arguably the ROI is low.
>>
>> 5. Jay's JSON example, where serialisation passes but the JSON message
>> doesn't have the expected fields, is an interesting one. It's a bit
>> complicated to handle this in the middle of processing. For example,
>> some operators in the DAG might actually find the needed JSON fields
>> and make progress, but other operators, for the same record, might not
>> find their fields and will throw an exception.
>>
>> At a minimum, handling this type of exception will need to involve the
>> exactly-once (EoS) logic. We'd still allow the option of failing or
>> skipping, but EoS would need to clean up by rolling back all the side
>> effects from the processing so far. Matthias, how does this sound?
> Eos will not help the record might be 5,6 repartitions down into the
> topology. I haven't followed but I pray you made EoS optional! We don't
> need this and we don't want this and we will turn it off if it comes. So
> I wouldn't recommend relying on it. The option to turn it off is better
> than forcing it and still beeing unable to rollback badpills (as
> explained before)
>>
>> 6. Will add an end-to-end example as Michael suggested.
>>
>> Thanks
>> Eno
>>
>>
>>
>>> On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:
>>>
>>> What I don't understand is this:
>>>
  From there on its the easiest way forward: fix, redeploy, start =>
 done
>>> If you have many producers that work fine and a new "bad" producer
>>> starts up and writes bad data into your input topic, your Streams app
>>> dies but all your producers, including the bad one, keep writing.
>>>
>>> Thus, how would you fix this, as you cannot "remove" the corrupted date
>>> from the topic? It might take some time to identify the root cause and
>>> stop the bad producer. Up to this point you get good and bad data into
>>> your Streams input topic. If Streams app in not able to skip over those
>>> bad records, how would you get all the good data from the topic? Not
>>> saying it's not possible, but it's extra work copying the data with a
>>> new non-Streams consumer-producer-app into a new topic and than feed
>>> your Streams app from this new topic -- you also need to update all your
>>> upstream producers to write to the new topic.
>>>
>>> Thus, if you want to fail fast, you can still do this. And after you
>>> detected and fixed the bad producer you might just reconfigure your app
>>> to skip bad records until it reaches the good part of the data.
>>> Afterwards, you could redeploy with fail-fast again.
>>>
>>>
>>> Thus, for this pattern

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-05 Thread Jan Filipiak

Hi

just my few thoughts

On 05.06.2017 11:44, Eno Thereska wrote:

Hi there,

Sorry for the late reply, I was out this past week. Looks like good progress 
was made with the discussions either way. Let me recap a couple of points I saw 
into one big reply:

1. Jan mentioned CRC errors. I think this is a good point. As these happen in 
Kafka, before Kafka Streams gets a chance to inspect anything, I'd like to hear 
the opinion of more Kafka folks like Ismael or Jason on this one. Currently the 
documentation is not great with what to do once a CRC check has failed. From 
looking at the code, it looks like the client gets a KafkaException (bubbled up 
from the fetcher) and currently we in streams catch this as part of poll() and 
fail. It might be advantageous to treat CRC handling in a similar way to 
serialisation handling (e.g., have the option to fail/skip). Let's see what the 
other folks say. Worst-case we can do a separate KIP for that if it proved too 
hard to do in one go.
there is no reasonable way to "skip" a crc error. How can you know the 
length you read was anything reasonable? you might be completely lost 
inside your response.

2. Damian has convinced me that the KIP should just be for deserialisation from 
the network, not from local state store DBs. For the latter we'll follow the 
current way of failing since the DB is likely corrupt.

3. Dead letter queue option. There was never any intention here to do anything 
super clever like attempt to re-inject the failed records from the dead letter 
queue back into the system. Reasoning about when that'd be useful in light of 
all sorts of semantic breakings would be hard (arguably impossible). The idea 
was to just have a place to have all these dead records to help with subsequent 
debugging. We could also just log a whole bunch of info for a poison pill 
record and not have a dead letter queue at all. Perhaps that's a better, 
simpler, starting point.

+1


4. Agree with Jay on style, a DefaultHandler with some config options. Will add 
options to KIP. Also as part of this let's remove the threshold logger since it 
gets complex and arguably the ROI is low.

5. Jay's JSON example, where serialisation passes but the JSON message doesn't 
have the expected fields, is an interesting one. It's a bit complicated to 
handle this in the middle of processing. For example, some operators in the DAG 
might actually find the needed JSON fields and make progress, but other 
operators, for the same record, might not find their fields and will throw an 
exception.

At a minimum, handling this type of exception will need to involve the 
exactly-once (EoS) logic. We'd still allow the option of failing or skipping, 
but EoS would need to clean up by rolling back all the side effects from the 
processing so far. Matthias, how does this sound?
Eos will not help the record might be 5,6 repartitions down into the 
topology. I haven't followed but I pray you made EoS optional! We don't 
need this and we don't want this and we will turn it off if it comes. So 
I wouldn't recommend relying on it. The option to turn it off is better 
than forcing it and still beeing unable to rollback badpills (as 
explained before)


6. Will add an end-to-end example as Michael suggested.

Thanks
Eno




On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:

What I don't understand is this:


 From there on its the easiest way forward: fix, redeploy, start => done

If you have many producers that work fine and a new "bad" producer
starts up and writes bad data into your input topic, your Streams app
dies but all your producers, including the bad one, keep writing.

Thus, how would you fix this, as you cannot "remove" the corrupted date
from the topic? It might take some time to identify the root cause and
stop the bad producer. Up to this point you get good and bad data into
your Streams input topic. If Streams app in not able to skip over those
bad records, how would you get all the good data from the topic? Not
saying it's not possible, but it's extra work copying the data with a
new non-Streams consumer-producer-app into a new topic and than feed
your Streams app from this new topic -- you also need to update all your
upstream producers to write to the new topic.

Thus, if you want to fail fast, you can still do this. And after you
detected and fixed the bad producer you might just reconfigure your app
to skip bad records until it reaches the good part of the data.
Afterwards, you could redeploy with fail-fast again.


Thus, for this pattern, I actually don't see any reason why to stop the
Streams app at all. If you have a callback, and use the callback to
raise an alert (and maybe get the bad data into a bad record queue), it
will not take longer to identify and stop the "bad" producer. But for
this case, you have zero downtime for your Streams app.

This seems to be much simpler. Or do I miss anything?


Having said this, I agree that the "threshold based callback" might be
questi

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-05 Thread Eno Thereska
Hi there,

Sorry for the late reply, I was out this past week. Looks like good progress 
was made with the discussions either way. Let me recap a couple of points I saw 
into one big reply:

1. Jan mentioned CRC errors. I think this is a good point. As these happen in 
Kafka, before Kafka Streams gets a chance to inspect anything, I'd like to hear 
the opinion of more Kafka folks like Ismael or Jason on this one. Currently the 
documentation is not great with what to do once a CRC check has failed. From 
looking at the code, it looks like the client gets a KafkaException (bubbled up 
from the fetcher) and currently we in streams catch this as part of poll() and 
fail. It might be advantageous to treat CRC handling in a similar way to 
serialisation handling (e.g., have the option to fail/skip). Let's see what the 
other folks say. Worst-case we can do a separate KIP for that if it proved too 
hard to do in one go.

2. Damian has convinced me that the KIP should just be for deserialisation from 
the network, not from local state store DBs. For the latter we'll follow the 
current way of failing since the DB is likely corrupt.

3. Dead letter queue option. There was never any intention here to do anything 
super clever like attempt to re-inject the failed records from the dead letter 
queue back into the system. Reasoning about when that'd be useful in light of 
all sorts of semantic breakings would be hard (arguably impossible). The idea 
was to just have a place to have all these dead records to help with subsequent 
debugging. We could also just log a whole bunch of info for a poison pill 
record and not have a dead letter queue at all. Perhaps that's a better, 
simpler, starting point. 

4. Agree with Jay on style, a DefaultHandler with some config options. Will add 
options to KIP. Also as part of this let's remove the threshold logger since it 
gets complex and arguably the ROI is low. 

5. Jay's JSON example, where serialisation passes but the JSON message doesn't 
have the expected fields, is an interesting one. It's a bit complicated to 
handle this in the middle of processing. For example, some operators in the DAG 
might actually find the needed JSON fields and make progress, but other 
operators, for the same record, might not find their fields and will throw an 
exception.

At a minimum, handling this type of exception will need to involve the 
exactly-once (EoS) logic. We'd still allow the option of failing or skipping, 
but EoS would need to clean up by rolling back all the side effects from the 
processing so far. Matthias, how does this sound?

6. Will add an end-to-end example as Michael suggested.

Thanks
Eno



> On 4 Jun 2017, at 02:35, Matthias J. Sax  wrote:
> 
> What I don't understand is this:
> 
>> From there on its the easiest way forward: fix, redeploy, start => done 
> 
> If you have many producers that work fine and a new "bad" producer
> starts up and writes bad data into your input topic, your Streams app
> dies but all your producers, including the bad one, keep writing.
> 
> Thus, how would you fix this, as you cannot "remove" the corrupted date
> from the topic? It might take some time to identify the root cause and
> stop the bad producer. Up to this point you get good and bad data into
> your Streams input topic. If Streams app in not able to skip over those
> bad records, how would you get all the good data from the topic? Not
> saying it's not possible, but it's extra work copying the data with a
> new non-Streams consumer-producer-app into a new topic and than feed
> your Streams app from this new topic -- you also need to update all your
> upstream producers to write to the new topic.
> 
> Thus, if you want to fail fast, you can still do this. And after you
> detected and fixed the bad producer you might just reconfigure your app
> to skip bad records until it reaches the good part of the data.
> Afterwards, you could redeploy with fail-fast again.
> 
> 
> Thus, for this pattern, I actually don't see any reason why to stop the
> Streams app at all. If you have a callback, and use the callback to
> raise an alert (and maybe get the bad data into a bad record queue), it
> will not take longer to identify and stop the "bad" producer. But for
> this case, you have zero downtime for your Streams app.
> 
> This seems to be much simpler. Or do I miss anything?
> 
> 
> Having said this, I agree that the "threshold based callback" might be
> questionable. But as you argue for strict "fail-fast", I want to argue
> that this must not always be the best pattern to apply and that the
> overall KIP idea is super useful from my point of view.
> 
> 
> -Matthias
> 
> 
> On 6/3/17 11:57 AM, Jan Filipiak wrote:
>> Could not agree more!
>> 
>> But then I think the easiest is still: print exception and die.
>> From there on its the easiest way forward: fix, redeploy, start => done
>> 
>> All the other ways to recover a pipeline that was processing partially
>> all the time
>> and suddenly

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-03 Thread Jan Filipiak

Could not agree more!

But then I think the easiest is still: print exception and die.
From there on its the easiest way forward: fix, redeploy, start => done

All the other ways to recover a pipeline that was processing partially 
all the time
and suddenly went over a "I cant take it anymore" threshold is not 
straight forward IMO.


How to find the offset, when it became to bad when it is not the latest 
commited one?

How to reset there? with some reasonable stuff in your rockses?

If one would do the following. The continuing Handler would measure for 
a threshold and
would terminate after a certain threshold has passed (per task). Then 
one can use offset commit/ flush intervals
to make reasonable assumption of how much is slipping by + you get an 
easy recovery when it gets to bad

+ you could also account for "in processing" records.

Setting this threshold to zero would cover all cases with 1 
implementation. It is still beneficial to have it pluggable


Again CRC-Errors are the only bad pills we saw in production for now.

Best Jan


On 02.06.2017 17:37, Jay Kreps wrote:

Jan, I agree with you philosophically. I think one practical challenge has
to do with data formats. Many people use untyped events, so there is simply
no guarantee on the form of the input. E.g. many companies use JSON without
any kind of schema so it becomes very hard to assert anything about the
input which makes these programs very fragile to the "one accidental
message publication that creates an unsolvable problem.

For that reason I do wonder if limiting to just serialization actually gets
you a useful solution. For JSON it will help with the problem of
non-parseable JSON, but sounds like it won't help in the case where the
JSON is well-formed but does not have any of the fields you expect and
depend on for your processing. I expect the reason for limiting the scope
is it is pretty hard to reason about correctness for anything that stops in
the middle of processing an operator DAG?

-Jay

On Fri, Jun 2, 2017 at 4:50 AM, Jan Filipiak 
wrote:


IMHO your doing it wrong then. + building to much support into the kafka
eco system is very counterproductive in fostering a happy userbase



On 02.06.2017 13:15, Damian Guy wrote:


Jan, you have a choice to Fail fast if you want. This is about giving
people options and there are times when you don't want to fail fast.


On Fri, 2 Jun 2017 at 11:00 Jan Filipiak 
wrote:

Hi

1.
That greatly complicates monitoring.  Fail Fast gives you that when you
monitor only the lag of all your apps
you are completely covered. With that sort of new application Monitoring
is very much more complicated as
you know need to monitor fail % of some special apps aswell. In my
opinion that is a huge downside already.

2.
using a schema regerstry like Avrostuff it might not even be the record
that is broken, it might be just your app
unable to fetch a schema it needs now know. Maybe you got partitioned
away from that registry.

3. When you get alerted because of to high fail percentage. what are the
steps you gonna do?
shut it down to buy time. fix the problem. spend way to much time to
find a good reprocess offset.
Your timewindows are in bad shape anyways, and you pretty much lost.
This routine is nonsense.

Dead letter queues would be the worst possible addition to the kafka
toolkit that I can think of. It just doesn't fit the architecture
of having clients falling behind is a valid option.

Further. I mentioned already the only bad pill ive seen so far is crc
errors. any plans for those?

Best Jan






On 02.06.2017 11:34, Damian Guy wrote:


I agree with what Matthias has said w.r.t failing fast. There are plenty


of


times when you don't want to fail-fast and must attempt to  make


progress.


The dead-letter queue is exactly for these circumstances. Of course if
every record is failing, then you probably do want to give up.

On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax 


wrote:


First a meta comment. KIP discussion should take place on the dev list

-- if user list is cc'ed please make sure to reply to both lists.


Thanks.
Thanks for making the scope of the KIP clear. Makes a lot of sense to

focus on deserialization exceptions for now.

With regard to corrupted state stores, would it make sense to fail a
task and wipe out the store to repair it via recreation from the
changelog? That's of course a quite advance pattern, but I want to
bring
it up to design the first step in a way such that we can get there (if
we think it's a reasonable idea).

I also want to comment about fail fast vs making progress. I think that
fail-fast must not always be the best option. The scenario I have in
mind is like this: you got a bunch of producers that feed the Streams
input topic. Most producers work find, but maybe one producer miss
behaves and the data it writes is corrupted. You might not even be able
to recover this lost data at any point -- thus, there is no reason to
stop processing but you just skip ove

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-02 Thread Jay Kreps
Jan, I agree with you philosophically. I think one practical challenge has
to do with data formats. Many people use untyped events, so there is simply
no guarantee on the form of the input. E.g. many companies use JSON without
any kind of schema so it becomes very hard to assert anything about the
input which makes these programs very fragile to the "one accidental
message publication that creates an unsolvable problem.

For that reason I do wonder if limiting to just serialization actually gets
you a useful solution. For JSON it will help with the problem of
non-parseable JSON, but sounds like it won't help in the case where the
JSON is well-formed but does not have any of the fields you expect and
depend on for your processing. I expect the reason for limiting the scope
is it is pretty hard to reason about correctness for anything that stops in
the middle of processing an operator DAG?

-Jay

On Fri, Jun 2, 2017 at 4:50 AM, Jan Filipiak 
wrote:

> IMHO your doing it wrong then. + building to much support into the kafka
> eco system is very counterproductive in fostering a happy userbase
>
>
>
> On 02.06.2017 13:15, Damian Guy wrote:
>
>> Jan, you have a choice to Fail fast if you want. This is about giving
>> people options and there are times when you don't want to fail fast.
>>
>>
>> On Fri, 2 Jun 2017 at 11:00 Jan Filipiak 
>> wrote:
>>
>> Hi
>>>
>>> 1.
>>> That greatly complicates monitoring.  Fail Fast gives you that when you
>>> monitor only the lag of all your apps
>>> you are completely covered. With that sort of new application Monitoring
>>> is very much more complicated as
>>> you know need to monitor fail % of some special apps aswell. In my
>>> opinion that is a huge downside already.
>>>
>>> 2.
>>> using a schema regerstry like Avrostuff it might not even be the record
>>> that is broken, it might be just your app
>>> unable to fetch a schema it needs now know. Maybe you got partitioned
>>> away from that registry.
>>>
>>> 3. When you get alerted because of to high fail percentage. what are the
>>> steps you gonna do?
>>> shut it down to buy time. fix the problem. spend way to much time to
>>> find a good reprocess offset.
>>> Your timewindows are in bad shape anyways, and you pretty much lost.
>>> This routine is nonsense.
>>>
>>> Dead letter queues would be the worst possible addition to the kafka
>>> toolkit that I can think of. It just doesn't fit the architecture
>>> of having clients falling behind is a valid option.
>>>
>>> Further. I mentioned already the only bad pill ive seen so far is crc
>>> errors. any plans for those?
>>>
>>> Best Jan
>>>
>>>
>>>
>>>
>>>
>>>
>>> On 02.06.2017 11:34, Damian Guy wrote:
>>>
 I agree with what Matthias has said w.r.t failing fast. There are plenty

>>> of
>>>
 times when you don't want to fail-fast and must attempt to  make

>>> progress.
>>>
 The dead-letter queue is exactly for these circumstances. Of course if
 every record is failing, then you probably do want to give up.

 On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax 

>>> wrote:
>>>
 First a meta comment. KIP discussion should take place on the dev list
> -- if user list is cc'ed please make sure to reply to both lists.
>
 Thanks.
>>>
 Thanks for making the scope of the KIP clear. Makes a lot of sense to
> focus on deserialization exceptions for now.
>
> With regard to corrupted state stores, would it make sense to fail a
> task and wipe out the store to repair it via recreation from the
> changelog? That's of course a quite advance pattern, but I want to
> bring
> it up to design the first step in a way such that we can get there (if
> we think it's a reasonable idea).
>
> I also want to comment about fail fast vs making progress. I think that
> fail-fast must not always be the best option. The scenario I have in
> mind is like this: you got a bunch of producers that feed the Streams
> input topic. Most producers work find, but maybe one producer miss
> behaves and the data it writes is corrupted. You might not even be able
> to recover this lost data at any point -- thus, there is no reason to
> stop processing but you just skip over those records. Of course, you
> need to fix the root cause, and thus you need to alert (either via logs
> of the exception handler directly) and you need to start to investigate
> to find the bad producer, shut it down and fix it.
>
> Here the dead letter queue comes into place. From my understanding, the
> purpose of this feature is solely enable post debugging. I don't think
> those record would be fed back at any point in time (so I don't see any
> ordering issue -- a skipped record, with this regard, is just "fully
> processed"). Thus, the dead letter queue should actually encode the
> original records metadata (topic, partition offset etc) to enable such
> debugging. I guess, this might also be 

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-02 Thread Jan Filipiak
IMHO your doing it wrong then. + building to much support into the kafka 
eco system is very counterproductive in fostering a happy userbase



On 02.06.2017 13:15, Damian Guy wrote:

Jan, you have a choice to Fail fast if you want. This is about giving
people options and there are times when you don't want to fail fast.


On Fri, 2 Jun 2017 at 11:00 Jan Filipiak  wrote:


Hi

1.
That greatly complicates monitoring.  Fail Fast gives you that when you
monitor only the lag of all your apps
you are completely covered. With that sort of new application Monitoring
is very much more complicated as
you know need to monitor fail % of some special apps aswell. In my
opinion that is a huge downside already.

2.
using a schema regerstry like Avrostuff it might not even be the record
that is broken, it might be just your app
unable to fetch a schema it needs now know. Maybe you got partitioned
away from that registry.

3. When you get alerted because of to high fail percentage. what are the
steps you gonna do?
shut it down to buy time. fix the problem. spend way to much time to
find a good reprocess offset.
Your timewindows are in bad shape anyways, and you pretty much lost.
This routine is nonsense.

Dead letter queues would be the worst possible addition to the kafka
toolkit that I can think of. It just doesn't fit the architecture
of having clients falling behind is a valid option.

Further. I mentioned already the only bad pill ive seen so far is crc
errors. any plans for those?

Best Jan






On 02.06.2017 11:34, Damian Guy wrote:

I agree with what Matthias has said w.r.t failing fast. There are plenty

of

times when you don't want to fail-fast and must attempt to  make

progress.

The dead-letter queue is exactly for these circumstances. Of course if
every record is failing, then you probably do want to give up.

On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax 

wrote:

First a meta comment. KIP discussion should take place on the dev list
-- if user list is cc'ed please make sure to reply to both lists.

Thanks.

Thanks for making the scope of the KIP clear. Makes a lot of sense to
focus on deserialization exceptions for now.

With regard to corrupted state stores, would it make sense to fail a
task and wipe out the store to repair it via recreation from the
changelog? That's of course a quite advance pattern, but I want to bring
it up to design the first step in a way such that we can get there (if
we think it's a reasonable idea).

I also want to comment about fail fast vs making progress. I think that
fail-fast must not always be the best option. The scenario I have in
mind is like this: you got a bunch of producers that feed the Streams
input topic. Most producers work find, but maybe one producer miss
behaves and the data it writes is corrupted. You might not even be able
to recover this lost data at any point -- thus, there is no reason to
stop processing but you just skip over those records. Of course, you
need to fix the root cause, and thus you need to alert (either via logs
of the exception handler directly) and you need to start to investigate
to find the bad producer, shut it down and fix it.

Here the dead letter queue comes into place. From my understanding, the
purpose of this feature is solely enable post debugging. I don't think
those record would be fed back at any point in time (so I don't see any
ordering issue -- a skipped record, with this regard, is just "fully
processed"). Thus, the dead letter queue should actually encode the
original records metadata (topic, partition offset etc) to enable such
debugging. I guess, this might also be possible if you just log the bad
records, but it would be harder to access (you first must find the
Streams instance that did write the log and extract the information from
there). Reading it from topic is much simpler.

I also want to mention the following. Assume you have such a topic with
some bad records and some good records. If we always fail-fast, it's
going to be super hard to process the good data. You would need to write
an extra app that copied the data into a new topic filtering out the bad
records (or apply the map() workaround withing stream). So I don't think
that failing fast is most likely the best option in production is
necessarily, true.

Or do you think there are scenarios, for which you can recover the
corrupted records successfully? And even if this is possible, it might
be a case for reprocessing instead of failing the whole application?
Also, if you think you can "repair" a corrupted record, should the
handler allow to return a "fixed" record? This would solve the ordering
problem.



-Matthias




On 5/30/17 1:47 AM, Michael Noll wrote:

Thanks for your work on this KIP, Eno -- much appreciated!

- I think it would help to improve the KIP by adding an end-to-end code
example that demonstrates, with the DSL and with the Processor API, how

the

user would write a simple application that would then be augmented with

the

proposed KIP

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-02 Thread Damian Guy
Jan, you have a choice to Fail fast if you want. This is about giving
people options and there are times when you don't want to fail fast.


On Fri, 2 Jun 2017 at 11:00 Jan Filipiak  wrote:

> Hi
>
> 1.
> That greatly complicates monitoring.  Fail Fast gives you that when you
> monitor only the lag of all your apps
> you are completely covered. With that sort of new application Monitoring
> is very much more complicated as
> you know need to monitor fail % of some special apps aswell. In my
> opinion that is a huge downside already.
>
> 2.
> using a schema regerstry like Avrostuff it might not even be the record
> that is broken, it might be just your app
> unable to fetch a schema it needs now know. Maybe you got partitioned
> away from that registry.
>
> 3. When you get alerted because of to high fail percentage. what are the
> steps you gonna do?
> shut it down to buy time. fix the problem. spend way to much time to
> find a good reprocess offset.
> Your timewindows are in bad shape anyways, and you pretty much lost.
> This routine is nonsense.
>
> Dead letter queues would be the worst possible addition to the kafka
> toolkit that I can think of. It just doesn't fit the architecture
> of having clients falling behind is a valid option.
>
> Further. I mentioned already the only bad pill ive seen so far is crc
> errors. any plans for those?
>
> Best Jan
>
>
>
>
>
>
> On 02.06.2017 11:34, Damian Guy wrote:
> > I agree with what Matthias has said w.r.t failing fast. There are plenty
> of
> > times when you don't want to fail-fast and must attempt to  make
> progress.
> > The dead-letter queue is exactly for these circumstances. Of course if
> > every record is failing, then you probably do want to give up.
> >
> > On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax 
> wrote:
> >
> >> First a meta comment. KIP discussion should take place on the dev list
> >> -- if user list is cc'ed please make sure to reply to both lists.
> Thanks.
> >>
> >> Thanks for making the scope of the KIP clear. Makes a lot of sense to
> >> focus on deserialization exceptions for now.
> >>
> >> With regard to corrupted state stores, would it make sense to fail a
> >> task and wipe out the store to repair it via recreation from the
> >> changelog? That's of course a quite advance pattern, but I want to bring
> >> it up to design the first step in a way such that we can get there (if
> >> we think it's a reasonable idea).
> >>
> >> I also want to comment about fail fast vs making progress. I think that
> >> fail-fast must not always be the best option. The scenario I have in
> >> mind is like this: you got a bunch of producers that feed the Streams
> >> input topic. Most producers work find, but maybe one producer miss
> >> behaves and the data it writes is corrupted. You might not even be able
> >> to recover this lost data at any point -- thus, there is no reason to
> >> stop processing but you just skip over those records. Of course, you
> >> need to fix the root cause, and thus you need to alert (either via logs
> >> of the exception handler directly) and you need to start to investigate
> >> to find the bad producer, shut it down and fix it.
> >>
> >> Here the dead letter queue comes into place. From my understanding, the
> >> purpose of this feature is solely enable post debugging. I don't think
> >> those record would be fed back at any point in time (so I don't see any
> >> ordering issue -- a skipped record, with this regard, is just "fully
> >> processed"). Thus, the dead letter queue should actually encode the
> >> original records metadata (topic, partition offset etc) to enable such
> >> debugging. I guess, this might also be possible if you just log the bad
> >> records, but it would be harder to access (you first must find the
> >> Streams instance that did write the log and extract the information from
> >> there). Reading it from topic is much simpler.
> >>
> >> I also want to mention the following. Assume you have such a topic with
> >> some bad records and some good records. If we always fail-fast, it's
> >> going to be super hard to process the good data. You would need to write
> >> an extra app that copied the data into a new topic filtering out the bad
> >> records (or apply the map() workaround withing stream). So I don't think
> >> that failing fast is most likely the best option in production is
> >> necessarily, true.
> >>
> >> Or do you think there are scenarios, for which you can recover the
> >> corrupted records successfully? And even if this is possible, it might
> >> be a case for reprocessing instead of failing the whole application?
> >> Also, if you think you can "repair" a corrupted record, should the
> >> handler allow to return a "fixed" record? This would solve the ordering
> >> problem.
> >>
> >>
> >>
> >> -Matthias
> >>
> >>
> >>
> >>
> >> On 5/30/17 1:47 AM, Michael Noll wrote:
> >>> Thanks for your work on this KIP, Eno -- much appreciated!
> >>>
> >>> - I think it would help to improve the KIP by 

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-02 Thread Jan Filipiak

Hi

1.
That greatly complicates monitoring.  Fail Fast gives you that when you 
monitor only the lag of all your apps
you are completely covered. With that sort of new application Monitoring 
is very much more complicated as
you know need to monitor fail % of some special apps aswell. In my 
opinion that is a huge downside already.


2.
using a schema regerstry like Avrostuff it might not even be the record 
that is broken, it might be just your app
unable to fetch a schema it needs now know. Maybe you got partitioned 
away from that registry.


3. When you get alerted because of to high fail percentage. what are the 
steps you gonna do?
shut it down to buy time. fix the problem. spend way to much time to 
find a good reprocess offset.

Your timewindows are in bad shape anyways, and you pretty much lost.
This routine is nonsense.

Dead letter queues would be the worst possible addition to the kafka 
toolkit that I can think of. It just doesn't fit the architecture

of having clients falling behind is a valid option.

Further. I mentioned already the only bad pill ive seen so far is crc 
errors. any plans for those?


Best Jan






On 02.06.2017 11:34, Damian Guy wrote:

I agree with what Matthias has said w.r.t failing fast. There are plenty of
times when you don't want to fail-fast and must attempt to  make progress.
The dead-letter queue is exactly for these circumstances. Of course if
every record is failing, then you probably do want to give up.

On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax  wrote:


First a meta comment. KIP discussion should take place on the dev list
-- if user list is cc'ed please make sure to reply to both lists. Thanks.

Thanks for making the scope of the KIP clear. Makes a lot of sense to
focus on deserialization exceptions for now.

With regard to corrupted state stores, would it make sense to fail a
task and wipe out the store to repair it via recreation from the
changelog? That's of course a quite advance pattern, but I want to bring
it up to design the first step in a way such that we can get there (if
we think it's a reasonable idea).

I also want to comment about fail fast vs making progress. I think that
fail-fast must not always be the best option. The scenario I have in
mind is like this: you got a bunch of producers that feed the Streams
input topic. Most producers work find, but maybe one producer miss
behaves and the data it writes is corrupted. You might not even be able
to recover this lost data at any point -- thus, there is no reason to
stop processing but you just skip over those records. Of course, you
need to fix the root cause, and thus you need to alert (either via logs
of the exception handler directly) and you need to start to investigate
to find the bad producer, shut it down and fix it.

Here the dead letter queue comes into place. From my understanding, the
purpose of this feature is solely enable post debugging. I don't think
those record would be fed back at any point in time (so I don't see any
ordering issue -- a skipped record, with this regard, is just "fully
processed"). Thus, the dead letter queue should actually encode the
original records metadata (topic, partition offset etc) to enable such
debugging. I guess, this might also be possible if you just log the bad
records, but it would be harder to access (you first must find the
Streams instance that did write the log and extract the information from
there). Reading it from topic is much simpler.

I also want to mention the following. Assume you have such a topic with
some bad records and some good records. If we always fail-fast, it's
going to be super hard to process the good data. You would need to write
an extra app that copied the data into a new topic filtering out the bad
records (or apply the map() workaround withing stream). So I don't think
that failing fast is most likely the best option in production is
necessarily, true.

Or do you think there are scenarios, for which you can recover the
corrupted records successfully? And even if this is possible, it might
be a case for reprocessing instead of failing the whole application?
Also, if you think you can "repair" a corrupted record, should the
handler allow to return a "fixed" record? This would solve the ordering
problem.



-Matthias




On 5/30/17 1:47 AM, Michael Noll wrote:

Thanks for your work on this KIP, Eno -- much appreciated!

- I think it would help to improve the KIP by adding an end-to-end code
example that demonstrates, with the DSL and with the Processor API, how

the

user would write a simple application that would then be augmented with

the

proposed KIP changes to handle exceptions.  It should also become much
clearer then that e.g. the KIP would lead to different code paths for the
happy case and any failure scenarios.

- Do we have sufficient information available to make informed decisions

on

what to do next?  For example, do we know in which part of the topology

the

record failed? `ConsumerRecord` gives 

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-02 Thread Damian Guy
I agree with what Matthias has said w.r.t failing fast. There are plenty of
times when you don't want to fail-fast and must attempt to  make progress.
The dead-letter queue is exactly for these circumstances. Of course if
every record is failing, then you probably do want to give up.

On Fri, 2 Jun 2017 at 07:56 Matthias J. Sax  wrote:

> First a meta comment. KIP discussion should take place on the dev list
> -- if user list is cc'ed please make sure to reply to both lists. Thanks.
>
> Thanks for making the scope of the KIP clear. Makes a lot of sense to
> focus on deserialization exceptions for now.
>
> With regard to corrupted state stores, would it make sense to fail a
> task and wipe out the store to repair it via recreation from the
> changelog? That's of course a quite advance pattern, but I want to bring
> it up to design the first step in a way such that we can get there (if
> we think it's a reasonable idea).
>
> I also want to comment about fail fast vs making progress. I think that
> fail-fast must not always be the best option. The scenario I have in
> mind is like this: you got a bunch of producers that feed the Streams
> input topic. Most producers work find, but maybe one producer miss
> behaves and the data it writes is corrupted. You might not even be able
> to recover this lost data at any point -- thus, there is no reason to
> stop processing but you just skip over those records. Of course, you
> need to fix the root cause, and thus you need to alert (either via logs
> of the exception handler directly) and you need to start to investigate
> to find the bad producer, shut it down and fix it.
>
> Here the dead letter queue comes into place. From my understanding, the
> purpose of this feature is solely enable post debugging. I don't think
> those record would be fed back at any point in time (so I don't see any
> ordering issue -- a skipped record, with this regard, is just "fully
> processed"). Thus, the dead letter queue should actually encode the
> original records metadata (topic, partition offset etc) to enable such
> debugging. I guess, this might also be possible if you just log the bad
> records, but it would be harder to access (you first must find the
> Streams instance that did write the log and extract the information from
> there). Reading it from topic is much simpler.
>
> I also want to mention the following. Assume you have such a topic with
> some bad records and some good records. If we always fail-fast, it's
> going to be super hard to process the good data. You would need to write
> an extra app that copied the data into a new topic filtering out the bad
> records (or apply the map() workaround withing stream). So I don't think
> that failing fast is most likely the best option in production is
> necessarily, true.
>
> Or do you think there are scenarios, for which you can recover the
> corrupted records successfully? And even if this is possible, it might
> be a case for reprocessing instead of failing the whole application?
> Also, if you think you can "repair" a corrupted record, should the
> handler allow to return a "fixed" record? This would solve the ordering
> problem.
>
>
>
> -Matthias
>
>
>
>
> On 5/30/17 1:47 AM, Michael Noll wrote:
> > Thanks for your work on this KIP, Eno -- much appreciated!
> >
> > - I think it would help to improve the KIP by adding an end-to-end code
> > example that demonstrates, with the DSL and with the Processor API, how
> the
> > user would write a simple application that would then be augmented with
> the
> > proposed KIP changes to handle exceptions.  It should also become much
> > clearer then that e.g. the KIP would lead to different code paths for the
> > happy case and any failure scenarios.
> >
> > - Do we have sufficient information available to make informed decisions
> on
> > what to do next?  For example, do we know in which part of the topology
> the
> > record failed? `ConsumerRecord` gives us access to topic, partition,
> > offset, timestamp, etc., but what about topology-related information
> (e.g.
> > what is the associated state store, if any)?
> >
> > - Only partly on-topic for the scope of this KIP, but this is about the
> > bigger picture: This KIP would give users the option to send corrupted
> > records to dead letter queue (quarantine topic).  But, what pattern would
> > we advocate to process such a dead letter queue then, e.g. how to allow
> for
> > retries with backoff ("If the first record in the dead letter queue fails
> > again, then try the second record for the time being and go back to the
> > first record at a later time").  Jay and Jan already alluded to ordering
> > problems that will be caused by dead letter queues. As I said, retries
> > might be out of scope but perhaps the implications should be considered
> if
> > possible?
> >
> > Also, I wrote the text below before reaching the point in the
> conversation
> > that this KIP's scope will be limited to exceptions in the category of
> > poiso

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-06-01 Thread Matthias J. Sax
First a meta comment. KIP discussion should take place on the dev list
-- if user list is cc'ed please make sure to reply to both lists. Thanks.

Thanks for making the scope of the KIP clear. Makes a lot of sense to
focus on deserialization exceptions for now.

With regard to corrupted state stores, would it make sense to fail a
task and wipe out the store to repair it via recreation from the
changelog? That's of course a quite advance pattern, but I want to bring
it up to design the first step in a way such that we can get there (if
we think it's a reasonable idea).

I also want to comment about fail fast vs making progress. I think that
fail-fast must not always be the best option. The scenario I have in
mind is like this: you got a bunch of producers that feed the Streams
input topic. Most producers work find, but maybe one producer miss
behaves and the data it writes is corrupted. You might not even be able
to recover this lost data at any point -- thus, there is no reason to
stop processing but you just skip over those records. Of course, you
need to fix the root cause, and thus you need to alert (either via logs
of the exception handler directly) and you need to start to investigate
to find the bad producer, shut it down and fix it.

Here the dead letter queue comes into place. From my understanding, the
purpose of this feature is solely enable post debugging. I don't think
those record would be fed back at any point in time (so I don't see any
ordering issue -- a skipped record, with this regard, is just "fully
processed"). Thus, the dead letter queue should actually encode the
original records metadata (topic, partition offset etc) to enable such
debugging. I guess, this might also be possible if you just log the bad
records, but it would be harder to access (you first must find the
Streams instance that did write the log and extract the information from
there). Reading it from topic is much simpler.

I also want to mention the following. Assume you have such a topic with
some bad records and some good records. If we always fail-fast, it's
going to be super hard to process the good data. You would need to write
an extra app that copied the data into a new topic filtering out the bad
records (or apply the map() workaround withing stream). So I don't think
that failing fast is most likely the best option in production is
necessarily, true.

Or do you think there are scenarios, for which you can recover the
corrupted records successfully? And even if this is possible, it might
be a case for reprocessing instead of failing the whole application?
Also, if you think you can "repair" a corrupted record, should the
handler allow to return a "fixed" record? This would solve the ordering
problem.



-Matthias




On 5/30/17 1:47 AM, Michael Noll wrote:
> Thanks for your work on this KIP, Eno -- much appreciated!
> 
> - I think it would help to improve the KIP by adding an end-to-end code
> example that demonstrates, with the DSL and with the Processor API, how the
> user would write a simple application that would then be augmented with the
> proposed KIP changes to handle exceptions.  It should also become much
> clearer then that e.g. the KIP would lead to different code paths for the
> happy case and any failure scenarios.
> 
> - Do we have sufficient information available to make informed decisions on
> what to do next?  For example, do we know in which part of the topology the
> record failed? `ConsumerRecord` gives us access to topic, partition,
> offset, timestamp, etc., but what about topology-related information (e.g.
> what is the associated state store, if any)?
> 
> - Only partly on-topic for the scope of this KIP, but this is about the
> bigger picture: This KIP would give users the option to send corrupted
> records to dead letter queue (quarantine topic).  But, what pattern would
> we advocate to process such a dead letter queue then, e.g. how to allow for
> retries with backoff ("If the first record in the dead letter queue fails
> again, then try the second record for the time being and go back to the
> first record at a later time").  Jay and Jan already alluded to ordering
> problems that will be caused by dead letter queues. As I said, retries
> might be out of scope but perhaps the implications should be considered if
> possible?
> 
> Also, I wrote the text below before reaching the point in the conversation
> that this KIP's scope will be limited to exceptions in the category of
> poison pills / deserialization errors.  But since Jay brought up user code
> errors again, I decided to include it again.
> 
> snip
> A meta comment: I am not sure about this split between the code for the
> happy path (e.g. map/filter/... in the DSL) from the failure path (using
> exception handlers).  In Scala, for example, we can do:
> 
> scala> val computation = scala.util.Try(1 / 0)
> computation: scala.util.Try[Int] =
> Failure(java.lang.Ari

Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-30 Thread Michael Noll
Thanks for your work on this KIP, Eno -- much appreciated!

- I think it would help to improve the KIP by adding an end-to-end code
example that demonstrates, with the DSL and with the Processor API, how the
user would write a simple application that would then be augmented with the
proposed KIP changes to handle exceptions.  It should also become much
clearer then that e.g. the KIP would lead to different code paths for the
happy case and any failure scenarios.

- Do we have sufficient information available to make informed decisions on
what to do next?  For example, do we know in which part of the topology the
record failed? `ConsumerRecord` gives us access to topic, partition,
offset, timestamp, etc., but what about topology-related information (e.g.
what is the associated state store, if any)?

- Only partly on-topic for the scope of this KIP, but this is about the
bigger picture: This KIP would give users the option to send corrupted
records to dead letter queue (quarantine topic).  But, what pattern would
we advocate to process such a dead letter queue then, e.g. how to allow for
retries with backoff ("If the first record in the dead letter queue fails
again, then try the second record for the time being and go back to the
first record at a later time").  Jay and Jan already alluded to ordering
problems that will be caused by dead letter queues. As I said, retries
might be out of scope but perhaps the implications should be considered if
possible?

Also, I wrote the text below before reaching the point in the conversation
that this KIP's scope will be limited to exceptions in the category of
poison pills / deserialization errors.  But since Jay brought up user code
errors again, I decided to include it again.

snip
A meta comment: I am not sure about this split between the code for the
happy path (e.g. map/filter/... in the DSL) from the failure path (using
exception handlers).  In Scala, for example, we can do:

scala> val computation = scala.util.Try(1 / 0)
computation: scala.util.Try[Int] =
Failure(java.lang.ArithmeticException: / by zero)

scala> computation.getOrElse(42)
res2: Int = 42

Another example with Scala's pattern matching, which is similar to
`KStream#branch()`:

computation match {
  case scala.util.Success(x) => x * 5
  case scala.util.Failure(_) => 42
}

(The above isn't the most idiomatic way to handle this in Scala, but that's
not the point I'm trying to make here.)

Hence the question I'm raising here is: Do we want to have an API where you
code "the happy path", and then have a different code path for failures
(using exceptions and handlers);  or should we treat both Success and
Failure in the same way?

I think the failure/exception handling approach (as proposed in this KIP)
is well-suited for errors in the category of deserialization problems aka
poison pills, partly because the (default) serdes are defined through
configuration (explicit serdes however are defined through API calls).

However, I'm not yet convinced that the failure/exception handling approach
is the best idea for user code exceptions, e.g. if you fail to guard
against NPE in your lambdas or divide a number by zero.

scala> val stream = Seq(1, 2, 3, 4, 5)
stream: Seq[Int] = List(1, 2, 3, 4, 5)

// Here: Fallback to a sane default when encountering failed records
scala> stream.map(x => Try(1/(3 - x))).flatMap(t =>
Seq(t.getOrElse(42)))
res19: Seq[Int] = List(0, 1, 42, -1, 0)

// Here: Skip over failed records
scala> stream.map(x => Try(1/(3 - x))).collect{ case Success(s) => s }
res20: Seq[Int] = List(0, 1, -1, 0)

The above is more natural to me than using error handlers to define how to
deal with failed records (here, the value `3` causes an arithmetic
exception).  Again, it might help the KIP if we added an end-to-end example
for such user code errors.
snip




On Tue, May 30, 2017 at 9:24 AM, Jan Filipiak 
wrote:

> Hi Jay,
>
> Eno mentioned that he will narrow down the scope to only ConsumerRecord
> deserialisation.
>
> I am working with Database Changelogs only. I would really not like to see
> a dead letter queue or something
> similliar. how am I expected to get these back in order. Just grind to
> hold an call me on the weekend. I'll fix it
> then in a few minutes rather spend 2 weeks ordering dead letters. (where
> reprocessing might be even the faster fix)
>
> Best Jan
>
>
>
>
> On 29.05.2017 20:23, Jay Kreps wrote:
>
>> - I think we should hold off on retries unless we have worked out the
>> full usage pattern, people can always implement their own. I think
>> the idea
>> is that you send the message to some kind of dead letter queue and
>> then
>> replay these later. This obviously destroys all semantic guarantees
>> we are
>> working hard to provide right now, which may be okay.
>>
>
>


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-30 Thread Jan Filipiak

Hi Jay,

Eno mentioned that he will narrow down the scope to only ConsumerRecord 
deserialisation.


I am working with Database Changelogs only. I would really not like to 
see a dead letter queue or something
similliar. how am I expected to get these back in order. Just grind to 
hold an call me on the weekend. I'll fix it
then in a few minutes rather spend 2 weeks ordering dead letters. (where 
reprocessing might be even the faster fix)


Best Jan



On 29.05.2017 20:23, Jay Kreps wrote:

- I think we should hold off on retries unless we have worked out the
full usage pattern, people can always implement their own. I think the idea
is that you send the message to some kind of dead letter queue and then
replay these later. This obviously destroys all semantic guarantees we are
working hard to provide right now, which may be okay.




Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-29 Thread Jay Kreps
Hey Eno,

I think this makes sense. I do think people who spend time running
production stream processing systems will, over time, end up strongly
preferring the current behavior of failing and fixing the root problem
rather than skipping, but we don't need to force this on people as long as
the default is to fail.

One thing I'm confused about is the scope of the proposal. I think the plan
is that this would cover all exceptions that occur whether in serializers
or ANY user code? Is that right? So if I do stream.map(x =>
x.header.timestamp) and that throws a NullPointerException, this would be
triggered? If so what I understand is that what is passed in to me is the
original consumer record, not the value x that produced the null pointer
exception? Is that right? If this understanding is correct then the
name RecordExceptionHandler should maybe be something like
ProcessingExceptionHandler since the exception isn't necessarily directly
tied to an input Record, right?

A couple of other comments:

   - It's important we maintain the original stack trace when we rethrow
   the exception (probably obvious, but thought I'd mention it)
   - As a matter of style I'd advocate for making a single
   DefaultExceptionHandler which logs the error and adding configs for this to
   control when (if ever) it fails. This will allow adding additional useful
   options in a way that can be combined (such as the dead letter thing,
   retries, etc). Basically the point is that these facilities aren't
   "either/or". Also you mention adding configs for these in the existing
   proposal, it'd be good to say what the configs are.
   - I think we should hold off on retries unless we have worked out the
   full usage pattern, people can always implement their own. I think the idea
   is that you send the message to some kind of dead letter queue and then
   replay these later. This obviously destroys all semantic guarantees we are
   working hard to provide right now, which may be okay.
   - I agree that the LogAndThresholdExceptionHandler is closest to what
   most people think they want. I think making the exception handler stateful
   is probably fine since this is inherently an approximate threshold. I do
   think this is a bit more complex then it sounds though since you'll
   obviously need to compute some kind of cheap running rate. Obviously the
   two failure modes you'd need to avoid are that 1/1 failures = 100% OR
   conversely that it runs successfully for one year and then fails 100% of
   the time but that isn't caught because of the excess prior history.

-Jay


On Thu, May 25, 2017 at 2:47 AM, Eno Thereska 
wrote:

> Hi there,
>
> I’ve added a KIP on improving exception handling in streams:
> KIP-161: streams record processing exception handlers.
> https://cwiki.apache.org/confluence/display/KAFKA/KIP-
> 161%3A+streams+record+processing+exception+handlers <
> https://cwiki.apache.org/confluence/display/KAFKA/KIP-161:+streams+record+
> processing+exception+handlers>
>
> Discussion and feedback is welcome, thank you.
> Eno


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-28 Thread Jan Filipiak

+1

On 26.05.2017 18:36, Damian Guy wrote:

In that case, though, every access to that key is doomed to failure as the
database is corrupted. So i think it should probably die in a steaming heap
at that point!

On Fri, 26 May 2017 at 17:33 Eno Thereska  wrote:


Hi Damian,

I was thinking of cases when there is bit-rot on the storage itself and we
get a malformed record that cannot be de-serialized. There is an
interesting intersection here with CRCs in both Kafka (already there, they
throw on deserialization) and potentially local storage (we don't have CRCs
here on the data files, though RocksDB has them on its write-ahead log
records).

Basically in a nutshell, I'm saying that every deserialization exception
should go through this new path. The user can decide to fail or continue.
We could start with just poison pills from Kafka though and punt the
storage one to later.

Eno


On 26 May 2017, at 16:59, Damian Guy  wrote:

Eno,

Under what circumstances would you get a deserialization exception from

the

state store? I can only think of the case where someone has provided a

bad

deserializer to a method that creates a state store. In which case it

would

be a user error and probably should just abort?

Thanks,
Damian

On Fri, 26 May 2017 at 16:32 Eno Thereska 

wrote:

See latest reply to Jan's note. I think I unnecessarily broadened the
scope of this KIP to the point where it sounded like it handles all

sorts

of exceptions. The scope should be strictly limited to "poison pill"
records for now. Will update KIP,

Thanks
Eno

On 26 May 2017, at 16:16, Matthias J. Sax 

wrote:

"bad" for this case would mean, that we got an
`DeserializationException`. I am not sure if any other processing error
should be covered?

@Eno: this raises one one question. Might it be better to allow for two
handlers instead of one? One for deserialization exception and one for
all other exceptions from user code?

Just a thought.


-Matthias

On 5/26/17 7:49 AM, Jim Jagielski wrote:

On May 26, 2017, at 5:13 AM, Eno Thereska 

wrote:




With regard to `DeserializationException`, do you thing it might

make

sense to have a "dead letter queue" as a feature to provide

out-of-the-box?

We could provide a special topic where bad messages go to, and then

we'd have to add a config option for the user to provide a topic. Is

that

what you're thinking?

For various definitions of "bad"??









Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Jan Filipiak

Hi Eno,

that does make a lot more sense to me. when you pop stuff out of a topic 
you can at least put the coordinates (topicpartition,offset) 
additionally into the log wich is probably kinda nice to just fetch it 
from CLI an check whats going on.


One additional question:

This handler is only going to cover Serde exceptions or MessageSet 
Iterator exceptions aswell? Speaking Checksum Error. We can't rely on 
the deserializer to properly throw when we hand it data with a bad 
checksum + the checksum errors are the only bad pills I have seen in 
production until this point.


Best Jan


On 26.05.2017 17:31, Eno Thereska wrote:

Hi Jan,

You're right. I think I got carried away and broadened the scope of this KIP beyond it's 
original purpose. This handler will only be there for deserialization errors, i.e., 
"poison pills" and is not intended to be a catch-all handler for all sorts of 
other problems (e.g., NPE exception in user code). Deserialization erros can happen 
either when polling or when deserialising from a state store. So that narrows down the 
scope of the KIP, will update it.

Thanks
Eno


On 26 May 2017, at 11:31, Jan Filipiak  wrote:

Hi

unfortunatly no. Think about "caching" these records popping outta there or 
multiple step Tasks (join,aggregate,repartiton all in one go) last repartitioner might 
throw cause it cant determine the partition only because a get on the join store cause a 
flush through the aggregates. This has nothing todo with a ConsumerRecord at all. 
Especially not the one we most recently processed.

To be completly honest. All but grining to a hold is not appealing to me at 
all. Sure maybe lagmonitoring will call me on Sunday but I can at least be 
confident its working the rest of the time.

Best Jan

PS.:

Hope you get my point. I am mostly complaing about

|public| |interface| |RecordExceptionHandler {|
|||/**|
|||* Inspect a record and the exception received|
|||*/|
|||HandlerResponse handle(that guy here >>>   ConsumerRecord<||byte||[], 
||byte||[]> record, Exception exception);|
|}|
||
|public| |enum| |HandlerResponse {|
|||/* continue with processing */|
|||CONTINUE(||1||), |
|||/* fail the processing and stop */|
|||FAIL(||2||);|
|}|



On 26.05.2017 11:18, Eno Thereska wrote:

Thanks Jan,

The record passed to the handler will always be the problematic record. There 
are 2 cases/types of exceptions for the purposes of this KIP: 1) any exception 
during deserialization. The bad record + the exception (i.e. 
DeserializeException) will be passed to the handler. The handler will be able 
to tell this was a deserialization error.
2) any exception during processing of this record. So whenever a processor gets 
the record (after some caching, etc) it starts to process it, then it fails, 
then it will call the handler with this record.

Does that match your thinking?

Thanks,
Eno



On 26 May 2017, at 09:51, Jan Filipiak  wrote:

Hi,

quick question: From the KIP it doesn't quite makes sense to me how that fits 
with caching.
With caching the consumer record might not be at all related to some processor 
throwing while processing.

would it not make more sense to get the ProcessorName + object object for 
processing and
statestore or topic name + byte[] byte[]  for serializers? maybe passing in the 
used serdes?

Best Jan



On 25.05.2017 11:47, Eno Thereska wrote:

Hi there,

I’ve added a KIP on improving exception handling in streams:
KIP-161: streams record processing exception handlers. 
https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
 


Discussion and feedback is welcome, thank you.
Eno




Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Damian Guy
In that case, though, every access to that key is doomed to failure as the
database is corrupted. So i think it should probably die in a steaming heap
at that point!

On Fri, 26 May 2017 at 17:33 Eno Thereska  wrote:

> Hi Damian,
>
> I was thinking of cases when there is bit-rot on the storage itself and we
> get a malformed record that cannot be de-serialized. There is an
> interesting intersection here with CRCs in both Kafka (already there, they
> throw on deserialization) and potentially local storage (we don't have CRCs
> here on the data files, though RocksDB has them on its write-ahead log
> records).
>
> Basically in a nutshell, I'm saying that every deserialization exception
> should go through this new path. The user can decide to fail or continue.
> We could start with just poison pills from Kafka though and punt the
> storage one to later.
>
> Eno
>
> > On 26 May 2017, at 16:59, Damian Guy  wrote:
> >
> > Eno,
> >
> > Under what circumstances would you get a deserialization exception from
> the
> > state store? I can only think of the case where someone has provided a
> bad
> > deserializer to a method that creates a state store. In which case it
> would
> > be a user error and probably should just abort?
> >
> > Thanks,
> > Damian
> >
> > On Fri, 26 May 2017 at 16:32 Eno Thereska 
> wrote:
> >
> >> See latest reply to Jan's note. I think I unnecessarily broadened the
> >> scope of this KIP to the point where it sounded like it handles all
> sorts
> >> of exceptions. The scope should be strictly limited to "poison pill"
> >> records for now. Will update KIP,
> >>
> >> Thanks
> >> Eno
> >>> On 26 May 2017, at 16:16, Matthias J. Sax 
> wrote:
> >>>
> >>> "bad" for this case would mean, that we got an
> >>> `DeserializationException`. I am not sure if any other processing error
> >>> should be covered?
> >>>
> >>> @Eno: this raises one one question. Might it be better to allow for two
> >>> handlers instead of one? One for deserialization exception and one for
> >>> all other exceptions from user code?
> >>>
> >>> Just a thought.
> >>>
> >>>
> >>> -Matthias
> >>>
> >>> On 5/26/17 7:49 AM, Jim Jagielski wrote:
> 
> > On May 26, 2017, at 5:13 AM, Eno Thereska 
> >> wrote:
> >
> >
> >>
> >>
> >> With regard to `DeserializationException`, do you thing it might
> make
> >> sense to have a "dead letter queue" as a feature to provide
> >> out-of-the-box?
> >
> > We could provide a special topic where bad messages go to, and then
> >> we'd have to add a config option for the user to provide a topic. Is
> that
> >> what you're thinking?
> >
> 
>  For various definitions of "bad"??
> 
> >>>
> >>
> >>
>
>


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Eno Thereska
Hi Damian,

I was thinking of cases when there is bit-rot on the storage itself and we get 
a malformed record that cannot be de-serialized. There is an interesting 
intersection here with CRCs in both Kafka (already there, they throw on 
deserialization) and potentially local storage (we don't have CRCs here on the 
data files, though RocksDB has them on its write-ahead log records). 

Basically in a nutshell, I'm saying that every deserialization exception should 
go through this new path. The user can decide to fail or continue. We could 
start with just poison pills from Kafka though and punt the storage one to 
later. 

Eno

> On 26 May 2017, at 16:59, Damian Guy  wrote:
> 
> Eno,
> 
> Under what circumstances would you get a deserialization exception from the
> state store? I can only think of the case where someone has provided a bad
> deserializer to a method that creates a state store. In which case it would
> be a user error and probably should just abort?
> 
> Thanks,
> Damian
> 
> On Fri, 26 May 2017 at 16:32 Eno Thereska  wrote:
> 
>> See latest reply to Jan's note. I think I unnecessarily broadened the
>> scope of this KIP to the point where it sounded like it handles all sorts
>> of exceptions. The scope should be strictly limited to "poison pill"
>> records for now. Will update KIP,
>> 
>> Thanks
>> Eno
>>> On 26 May 2017, at 16:16, Matthias J. Sax  wrote:
>>> 
>>> "bad" for this case would mean, that we got an
>>> `DeserializationException`. I am not sure if any other processing error
>>> should be covered?
>>> 
>>> @Eno: this raises one one question. Might it be better to allow for two
>>> handlers instead of one? One for deserialization exception and one for
>>> all other exceptions from user code?
>>> 
>>> Just a thought.
>>> 
>>> 
>>> -Matthias
>>> 
>>> On 5/26/17 7:49 AM, Jim Jagielski wrote:
 
> On May 26, 2017, at 5:13 AM, Eno Thereska 
>> wrote:
> 
> 
>> 
>> 
>> With regard to `DeserializationException`, do you thing it might make
>> sense to have a "dead letter queue" as a feature to provide
>> out-of-the-box?
> 
> We could provide a special topic where bad messages go to, and then
>> we'd have to add a config option for the user to provide a topic. Is that
>> what you're thinking?
> 
 
 For various definitions of "bad"??
 
>>> 
>> 
>> 



Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Damian Guy
Eno,

Under what circumstances would you get a deserialization exception from the
state store? I can only think of the case where someone has provided a bad
deserializer to a method that creates a state store. In which case it would
be a user error and probably should just abort?

Thanks,
Damian

On Fri, 26 May 2017 at 16:32 Eno Thereska  wrote:

> See latest reply to Jan's note. I think I unnecessarily broadened the
> scope of this KIP to the point where it sounded like it handles all sorts
> of exceptions. The scope should be strictly limited to "poison pill"
> records for now. Will update KIP,
>
> Thanks
> Eno
> > On 26 May 2017, at 16:16, Matthias J. Sax  wrote:
> >
> > "bad" for this case would mean, that we got an
> > `DeserializationException`. I am not sure if any other processing error
> > should be covered?
> >
> > @Eno: this raises one one question. Might it be better to allow for two
> > handlers instead of one? One for deserialization exception and one for
> > all other exceptions from user code?
> >
> > Just a thought.
> >
> >
> > -Matthias
> >
> > On 5/26/17 7:49 AM, Jim Jagielski wrote:
> >>
> >>> On May 26, 2017, at 5:13 AM, Eno Thereska 
> wrote:
> >>>
> >>>
> 
> 
>  With regard to `DeserializationException`, do you thing it might make
>  sense to have a "dead letter queue" as a feature to provide
> out-of-the-box?
> >>>
> >>> We could provide a special topic where bad messages go to, and then
> we'd have to add a config option for the user to provide a topic. Is that
> what you're thinking?
> >>>
> >>
> >> For various definitions of "bad"??
> >>
> >
>
>


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Eno Thereska
See latest reply to Jan's note. I think I unnecessarily broadened the scope of 
this KIP to the point where it sounded like it handles all sorts of exceptions. 
The scope should be strictly limited to "poison pill" records for now. Will 
update KIP, 

Thanks
Eno
> On 26 May 2017, at 16:16, Matthias J. Sax  wrote:
> 
> "bad" for this case would mean, that we got an
> `DeserializationException`. I am not sure if any other processing error
> should be covered?
> 
> @Eno: this raises one one question. Might it be better to allow for two
> handlers instead of one? One for deserialization exception and one for
> all other exceptions from user code?
> 
> Just a thought.
> 
> 
> -Matthias
> 
> On 5/26/17 7:49 AM, Jim Jagielski wrote:
>> 
>>> On May 26, 2017, at 5:13 AM, Eno Thereska  wrote:
>>> 
>>> 
 
 
 With regard to `DeserializationException`, do you thing it might make
 sense to have a "dead letter queue" as a feature to provide out-of-the-box?
>>> 
>>> We could provide a special topic where bad messages go to, and then we'd 
>>> have to add a config option for the user to provide a topic. Is that what 
>>> you're thinking?
>>> 
>> 
>> For various definitions of "bad"??
>> 
> 



Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Eno Thereska
Hi Jan,

You're right. I think I got carried away and broadened the scope of this KIP 
beyond it's original purpose. This handler will only be there for 
deserialization errors, i.e., "poison pills" and is not intended to be a 
catch-all handler for all sorts of other problems (e.g., NPE exception in user 
code). Deserialization erros can happen either when polling or when 
deserialising from a state store. So that narrows down the scope of the KIP, 
will update it.

Thanks
Eno

> On 26 May 2017, at 11:31, Jan Filipiak  wrote:
> 
> Hi
> 
> unfortunatly no. Think about "caching" these records popping outta there or 
> multiple step Tasks (join,aggregate,repartiton all in one go) last 
> repartitioner might throw cause it cant determine the partition only because 
> a get on the join store cause a flush through the aggregates. This has 
> nothing todo with a ConsumerRecord at all. Especially not the one we most 
> recently processed.
> 
> To be completly honest. All but grining to a hold is not appealing to me at 
> all. Sure maybe lagmonitoring will call me on Sunday but I can at least be 
> confident its working the rest of the time.
> 
> Best Jan
> 
> PS.:
> 
> Hope you get my point. I am mostly complaing about
> 
> |public| |interface| |RecordExceptionHandler {|
> |||/**|
> |||* Inspect a record and the exception received|
> |||*/|
> |||HandlerResponse handle(that guy here >>>   ConsumerRecord<||byte||[], 
> ||byte||[]> record, Exception exception);|
> |}|
> ||
> |public| |enum| |HandlerResponse {|
> |||/* continue with processing */|
> |||CONTINUE(||1||), |
> |||/* fail the processing and stop */|
> |||FAIL(||2||);|
> |}|
> 
> 
> 
> On 26.05.2017 11:18, Eno Thereska wrote:
>> Thanks Jan,
>> 
>> The record passed to the handler will always be the problematic record. 
>> There are 2 cases/types of exceptions for the purposes of this KIP: 1) any 
>> exception during deserialization. The bad record + the exception (i.e. 
>> DeserializeException) will be passed to the handler. The handler will be 
>> able to tell this was a deserialization error.
>> 2) any exception during processing of this record. So whenever a processor 
>> gets the record (after some caching, etc) it starts to process it, then it 
>> fails, then it will call the handler with this record.
>> 
>> Does that match your thinking?
>> 
>> Thanks,
>> Eno
>> 
>> 
>>> On 26 May 2017, at 09:51, Jan Filipiak  wrote:
>>> 
>>> Hi,
>>> 
>>> quick question: From the KIP it doesn't quite makes sense to me how that 
>>> fits with caching.
>>> With caching the consumer record might not be at all related to some 
>>> processor throwing while processing.
>>> 
>>> would it not make more sense to get the ProcessorName + object object for 
>>> processing and
>>> statestore or topic name + byte[] byte[]  for serializers? maybe passing in 
>>> the used serdes?
>>> 
>>> Best Jan
>>> 
>>> 
>>> 
>>> On 25.05.2017 11:47, Eno Thereska wrote:
 Hi there,
 
 I’ve added a KIP on improving exception handling in streams:
 KIP-161: streams record processing exception handlers. 
 https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
  
 
 
 Discussion and feedback is welcome, thank you.
 Eno
> 



Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Matthias J. Sax
"bad" for this case would mean, that we got an
`DeserializationException`. I am not sure if any other processing error
should be covered?

@Eno: this raises one one question. Might it be better to allow for two
handlers instead of one? One for deserialization exception and one for
all other exceptions from user code?

Just a thought.


-Matthias

On 5/26/17 7:49 AM, Jim Jagielski wrote:
> 
>> On May 26, 2017, at 5:13 AM, Eno Thereska  wrote:
>>
>>
>>>
>>>
>>> With regard to `DeserializationException`, do you thing it might make
>>> sense to have a "dead letter queue" as a feature to provide out-of-the-box?
>>
>> We could provide a special topic where bad messages go to, and then we'd 
>> have to add a config option for the user to provide a topic. Is that what 
>> you're thinking?
>>
> 
> For various definitions of "bad"??
> 



signature.asc
Description: OpenPGP digital signature


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Matthias J. Sax
About `LogAndThresholdExceptionHandler`:

If the handler needs to keep track of number of failed messages, than it
becomes stateful -- not sure if we should do that. But maybe we can
introduce 2 metrics (might be an interesting metric to report to the
user anyway) and allow programmatic access to this metric in the
handler. This might also work better, as we should use "windowed"
failure rate anyway -- an absolute count of failed messages from
beginning of time would not work very well IMHO.

About "dead letter queue":

Yes, that what my thought -- we provide an out-of-the-box handler that
writes to a topic (thus, this part is covered by setting the
corresponding handler in the config). Thus, not sure if we need a config
for the topic name as we could exploit `Configurable` or we just use a
fixed name like "-dead-letters" (or some better name).
Not sure how important it is to configure the name (the less config the
better -- otherwise it's getting to hard to see what is
important/relevant and what not)


-Matthias


On 5/26/17 2:13 AM, Eno Thereska wrote:
> Replying to Avi's and Matthias' questions in one go inline:
> 
>> On 25 May 2017, at 19:27, Matthias J. Sax  wrote:
>>
>> Thanks for the KIP Eno!
>>
>> Couple of comments:
>>
>> I think we don't need `RecordContext` in `RecordExceptionHandler#handle`
>> because the `ConsumerRecord` provides all this information anyway.
> 
> Good point, fixed.
> 
>>
>> Why we introduce `ExceptionType` and not just hand in the actual exception?
>>
> 
> Ok, changed.
> 
>> As return type of `handle()` is void, how would the handler fail? By
>> throwing an exception? Maybe it would be better to add a proper return
>> type from the beginning on -- this might also make backward
>> compatibility easier later on.
> 
> Added two options to the KIP, see what you think (Continue/Fail). If we add 
> Retry later on, not sure if that'd trigger a KIP.
> 
>>
>> Question about `LogAndThresholdExceptionHandler` -- how would we be able
>> to track this?
> 
> I'm thinking StreamsThread instantiates one such handler that keeps a count 
> of failed messages. The handler will need to know the total of successful 
> messages too though, and come to think of it some more, we don't have a 
> metric that keeps that. We can either add that metric (in JMX) or 
> alternatively change the threshold handler to respond to number of failures, 
> instead of %. Preferences?
>>
>>
>> With regard to `DeserializationException`, do you thing it might make
>> sense to have a "dead letter queue" as a feature to provide out-of-the-box?
> 
> We could provide a special topic where bad messages go to, and then we'd have 
> to add a config option for the user to provide a topic. Is that what you're 
> thinking?
> 
> Eno
> 
> 
>>
>>
>> -Matthias
>>
>> On 5/25/17 2:47 AM, Eno Thereska wrote:
>>> Hi there,
>>>
>>> I’ve added a KIP on improving exception handling in streams:
>>> KIP-161: streams record processing exception handlers. 
>>> https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
>>>  
>>> 
>>>
>>> Discussion and feedback is welcome, thank you.
>>> Eno
>>>
>>
> 



signature.asc
Description: OpenPGP digital signature


Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Jan Filipiak

Hi

unfortunatly no. Think about "caching" these records popping outta there 
or multiple step Tasks (join,aggregate,repartiton all in one go) last 
repartitioner might throw cause it cant determine the partition only 
because a get on the join store cause a flush through the aggregates. 
This has nothing todo with a ConsumerRecord at all. Especially not the 
one we most recently processed.


To be completly honest. All but grining to a hold is not appealing to me 
at all. Sure maybe lagmonitoring will call me on Sunday but I can at 
least be confident its working the rest of the time.


Best Jan

PS.:

Hope you get my point. I am mostly complaing about

|public| |interface| |RecordExceptionHandler {|
|||/**|
|||* Inspect a record and the exception received|
|||*/|
|||HandlerResponse handle(that guy here >>>   
ConsumerRecord<||byte||[], ||byte||[]> record, Exception exception);|

|}|
||
|public| |enum| |HandlerResponse {|
|||/* continue with processing */|
|||CONTINUE(||1||), |
|||/* fail the processing and stop */|
|||FAIL(||2||);|
|}|



On 26.05.2017 11:18, Eno Thereska wrote:

Thanks Jan,

The record passed to the handler will always be the problematic record. There 
are 2 cases/types of exceptions for the purposes of this KIP: 1) any exception 
during deserialization. The bad record + the exception (i.e. 
DeserializeException) will be passed to the handler. The handler will be able 
to tell this was a deserialization error.
2) any exception during processing of this record. So whenever a processor gets 
the record (after some caching, etc) it starts to process it, then it fails, 
then it will call the handler with this record.

Does that match your thinking?

Thanks,
Eno



On 26 May 2017, at 09:51, Jan Filipiak  wrote:

Hi,

quick question: From the KIP it doesn't quite makes sense to me how that fits 
with caching.
With caching the consumer record might not be at all related to some processor 
throwing while processing.

would it not make more sense to get the ProcessorName + object object for 
processing and
statestore or topic name + byte[] byte[]  for serializers? maybe passing in the 
used serdes?

Best Jan



On 25.05.2017 11:47, Eno Thereska wrote:

Hi there,

I’ve added a KIP on improving exception handling in streams:
KIP-161: streams record processing exception handlers. 
https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
 


Discussion and feedback is welcome, thank you.
Eno




Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Eno Thereska
Thanks Jan,

The record passed to the handler will always be the problematic record. There 
are 2 cases/types of exceptions for the purposes of this KIP: 1) any exception 
during deserialization. The bad record + the exception (i.e. 
DeserializeException) will be passed to the handler. The handler will be able 
to tell this was a deserialization error. 
2) any exception during processing of this record. So whenever a processor gets 
the record (after some caching, etc) it starts to process it, then it fails, 
then it will call the handler with this record.

Does that match your thinking?

Thanks,
Eno


> On 26 May 2017, at 09:51, Jan Filipiak  wrote:
> 
> Hi,
> 
> quick question: From the KIP it doesn't quite makes sense to me how that fits 
> with caching.
> With caching the consumer record might not be at all related to some 
> processor throwing while processing.
> 
> would it not make more sense to get the ProcessorName + object object for 
> processing and
> statestore or topic name + byte[] byte[]  for serializers? maybe passing in 
> the used serdes?
> 
> Best Jan
> 
> 
> 
> On 25.05.2017 11:47, Eno Thereska wrote:
>> Hi there,
>> 
>> I’ve added a KIP on improving exception handling in streams:
>> KIP-161: streams record processing exception handlers. 
>> https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
>>  
>> 
>> 
>> Discussion and feedback is welcome, thank you.
>> Eno
> 



Re: [DISCUSS]: KIP-161: streams record processing exception handlers

2017-05-26 Thread Jan Filipiak

Hi,

quick question: From the KIP it doesn't quite makes sense to me how that 
fits with caching.
With caching the consumer record might not be at all related to some 
processor throwing while processing.


would it not make more sense to get the ProcessorName + object object 
for processing and
statestore or topic name + byte[] byte[]  for serializers? maybe passing 
in the used serdes?


Best Jan



On 25.05.2017 11:47, Eno Thereska wrote:

Hi there,

I’ve added a KIP on improving exception handling in streams:
KIP-161: streams record processing exception handlers. 
https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+record+processing+exception+handlers
 


Discussion and feedback is welcome, thank you.
Eno