A minha conclusão de que f e g não têm zeros em C sse f = g está
equivocada. É verdade que se f e g não têm zeros então f = g. Mas a
recíproca não é verdadeira
>
>> Artur
>>
>
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Naquele meu outro post, houve um equívoco no enunciado do T. de Rouché.
> A desigualdade
>
> |f(z) - g(z)| < |f(z)| + |g(z)|
>
> tem que valer apenas no traço W* da curva.
>
> Artur
>
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Em qui, 30 de jul de 2020 16:22, Artur Costa Steiner
escreveu:
> Também me ocorreu isso, mas depois pensei em me basear no T. de Rouché (o
> da Análise Complexa, não o da Álgebra Linear). Em sua forma geral, este
> teorema diz:
>
> Se V um aberto do plano e W uma curva suave e fechada em V tal q
Também me ocorreu isso, mas depois pensei em me basear no T. de Rouché (o
da Análise Complexa, não o da Álgebra Linear). Em sua forma geral, este
teorema diz:
Se V um aberto do plano e W uma curva suave e fechada em V tal que Ind(W,
z) = 0 ou 1 para z em V/W* (o traço de W) e = 0 para z em C/V. S
Será que fazendo w = 1/z e w -> 0 ajuda?
On Thu, Jul 30, 2020 at 7:24 AM Artur Costa Steiner <
artur.costa.stei...@gmail.com> wrote:
> Sejam f e g funções inteiras tais que lim |z| ---> oo f(z)/g(z) = 1.
> Mostre que f e g tem um número finito de zeros em C e que o número de zeros
> de f é igua
Favor quem puder me responder agradeço
1º) Usando os valores principais de z^i, (z=re^îø), escreva z^i na forma
u(r,ø) + iv(r,ø)e mostre que u=u(r,ø) e v=v(r,ø) são funções harmônicas.
Para quem não sabe, funções harmônicas são aquelas que satisfazem a
equação
diferencial de Laplace:
http://
Favor quem puder me responder agradeço
1º) Seja f: C-->C uma função tal que: para todo z,w pertencente a C,
f(z+w)
= f(z).f(w). Prove que, se f é contínua em z=0, então f é contínua.
É só provar que ela é diferenciável em z =0. Se ela for diferenciável
(holomorfa)
em z =0 então ela é con
7 matches
Mail list logo