Olá,
z = cis(r) = cos(r) + isen(r)
z^n = cis(nr) = cos(nr) + isen(nr)
Sum(cis(kr)) = Sum(z^k) , k = 1 ... n
Sum(z^k) = z + z^2 + z^3 + ... + z^n = z(z^n - 1) /
(z - 1) [somatorio de PG]
Sum(z^k) = cis(r) [ cis(nr) - 1 ] / [ cis(r) - 1
]
Sum(cis(kr)) = cis(r) [ cis(nr) - 1 ] / [ cis(r)
Olá,
seja x = sqrt[25/2+sqrt(25/2-n)] + sqrt[25/2-sqrt(25/2-n)],
entao:
x^2 = 25 + 2*sqrt[625/4 - (25/2-n)]
x^2 = 25 + 2*sqrt[575/4+n]
x^2 = 25 + sqrt(575+4n)
x = sqrt[ 25 + sqrt(575+4n) ]
575 + 4n >= 0
n >= -143,75
da expressao original, temos que 25/2 - n >= 0,
logo: n <= 12,5
como n
2 matches
Mail list logo