From the energy part of the output alone we can't tell if the input was correct. You see a smallish difference and lower energy with the ghost, which one would expect.

Total energies are meaningless, and of course adding a few basis functions won't change the total by a lot. You need to compare differences (like a binding energy, as you indicated in your original post).

In the example outputs below, the difference (in absolute energies) is 0.09 eV. That's 2 kcal/mol or 9 kJ/mol. Depending on the interaction you are looking at, this may or may not be negligible.

  Herbert

On 03/18/2011 02:00 AM, Wei Hu wrote:
Dear,the ghost atoms calculations seem to little effects on the total energy 
from my results. Is there any wrong?

My results about a nitrogen-vacancy center in bulk diamond C62N (2*2*2):

The results with ghost atoms:

siesta: Program's energy decomposition (eV):
siesta: Eions   =     16680.576136
siesta: Ena     =      3653.202863
siesta: Ekin    =      7163.588024
siesta: Enl     =      -820.400928
siesta: DEna    =      -182.458272
siesta: DUscf   =        15.575306
siesta: DUext   =         0.000000
siesta: Exc     =     -3054.613637
siesta: eta*DQ  =         0.000000
siesta: Emadel  =         0.000000
siesta: Ekinion =         0.000000
siesta: Eharris =     -9905.679557
siesta: Etot    =     -9905.682781
siesta: FreeEng =     -9905.682783

siesta: Final energy (eV):
siesta:       Kinetic =    7163.588024
siesta:       Hartree =     894.608032
siesta:    Ext. field =       0.000000
siesta:   Exch.-corr. =   -3054.613637
siesta:  Ion-electron =   -8393.758885
siesta:       Ion-ion =   -6515.506314
siesta:       Ekinion =       0.000000
siesta:         Total =   -9905.682781

The results without ghost atoms:

siesta: Program's energy decomposition (eV):
siesta: Eions   =     16680.576136
siesta: Ena     =      3653.202863
siesta: Ekin    =      7164.385562
siesta: Enl     =      -820.554764
siesta: DEna    =      -182.943454
siesta: DUscf   =        15.589130
siesta: DUext   =         0.000000
siesta: Exc     =     -3054.694636
siesta: eta*DQ  =         0.000000
siesta: Emadel  =         0.000000
siesta: Ekinion =         0.000000
siesta: Eharris =     -9905.587400
siesta: Etot    =     -9905.591435
siesta: FreeEng =     -9905.591437

siesta: Final energy (eV):
siesta:       Kinetic =    7164.385562
siesta:       Hartree =     894.861106
siesta:    Ext. field =       0.000000
siesta:   Exch.-corr. =   -3054.694636
siesta:  Ion-electron =   -8394.637153
siesta:       Ion-ion =   -6515.506314
siesta:       Ekinion =       0.000000
siesta:         Total =   -9905.591435




-----Original E-mail-----
From: "Herbert Fruchtl"<herbert.fruc...@st-andrews.ac.uk>
Sent Time: 2011-3-17 22:36:53
To: siesta-l@uam.es
Cc:
Subject: Re: [SIESTA-L] about basis-set superposition error (BSSE)

You can calculate counterpoise-corrected energies by specifying ghost atoms.
There is no way of doing counterpoise-corrected geometry optimisations in 
SIESTA.

   Herbert

On 03/17/2011 01:57 PM, yf liu wrote:
Hello everybody,

whether the basis-set superposition error (BSSE) is included in siesta
calculation. when i calculate the molecule adsorption on carbon nanotube, i
found the adsorption energy is some higher than the well know value. how can i
add the BSSE in siesta calculation?

yours
yufeng liu


--
Herbert Fruchtl
Senior Scientific Computing Officer
School of Chemistry, School of Mathematics and Statistics
University of St Andrews
--
The University of St Andrews is a charity registered in Scotland:
No SC013532


--
Herbert Fruchtl
Senior Scientific Computing Officer
School of Chemistry, School of Mathematics and Statistics
University of St Andrews
--
The University of St Andrews is a charity registered in Scotland:
No SC013532

Responder a