the following code is ok when expression is passed as : import numpy as np from scipy.optimize import minimize, curve_fit from lmfit import Model, Parameters
L = np.array([0.299, 0.295, 0.290, 0.284, 0.279, 0.273, 0.268, 0.262, 0.256, 0.250]) K = np.array([2.954, 3.056, 3.119, 3.163, 3.215, 3.274, 3.351, 3.410, 3.446, 3.416]) VA = np.array([0.919, 0.727, 0.928, 0.629, 0.656, 0.854, 0.955, 0.981, 0.908, 0.794]) def f(param): gamma = param[0] alpha = param[1] beta = param[2] eta = param[3] VA_est = gamma - (1 / eta) * np.log(alpha * L ** -eta + beta * K ** -eta) return np.sum((np.log(VA) - VA_est) ** 2) bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] x0 = (1, 0.01, 0.98, 1) result = minimize(f, x0, bounds=bnds) print(result.message) print(result.x[0], result.x[1], result.x[2], result.x[3]) but when the expression is passed as the following way: import numpy as np import sympy as sp from scipy.optimize import minimize, curve_fit from lmfit import Model, Parameters L = np.array([0.299, 0.295, 0.290, 0.284, 0.279, 0.273, 0.268, 0.262, 0.256, 0.250]) K = np.array([2.954, 3.056, 3.119, 3.163, 3.215, 3.274, 3.351, 3.410, 3.446, 3.416]) VA = np.array([0.919, 0.727, 0.928, 0.629, 0.656, 0.854, 0.955, 0.981, 0.908, 0.794]) def f(param): gamma, alpha, beta, eta = sp.symbols('gamma, alpha, beta, eta') gamma = param[0] alpha = param[1] beta = param[2] eta = param[3] Vi_est = gamma - (1 / eta) * sp.log(alpha * L ** -eta + beta * K ** -eta) Vlam_est = sp.lambdify((gamma, alpha, beta, eta), Vi_est) return np.sum((np.log(VA) - Vlam_est) ** 2) bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] x0 = (1, 0.01, 0.98, 1) result = minimize(f, x0, bounds=bnds) print(result.message) print(result.x[0], result.x[1], result.x[2], result.x[3]) I face difficulty: ********************************************* Traceback (most recent call last): File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", line 70, in wrapper retval = cfunc(*args, **kwargs) TypeError: unhashable type: 'numpy.ndarray' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", line 70, in wrapper retval = cfunc(*args, **kwargs) TypeError: unhashable type: 'numpy.ndarray' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "F:\Zohreh\MainZohreh\postdoc-field\CSU\pythonProject\fit_test_2.py", line 26, in <module> result = minimize(f, x0, bounds=bnds) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_minimize.py", line 692, in minimize res = _minimize_lbfgsb(fun, x0, args, jac, bounds, File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_lbfgsb_py.py", line 308, in _minimize_lbfgsb sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_optimize.py", line 263, in _prepare_scalar_function sf = ScalarFunction(fun, x0, args, grad, hess, File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", line 158, in __init__ self._update_fun() File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", line 251, in _update_fun self._update_fun_impl() File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", line 155, in update_fun self.f = fun_wrapped(self.x) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", line 137, in fun_wrapped fx = fun(np.copy(x), *args) File "F:\Zohreh\MainZohreh\postdoc-field\CSU\pythonProject\fit_test_2.py", line 17, in f Vi_est = gamma - (1 / eta) * sp.log(alpha * L ** -eta + beta * K ** -eta) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", line 74, in wrapper retval = func(*args, **kwargs) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\function.py", line 476, in __new__ result = super().__new__(cls, *args, **options) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", line 74, in wrapper retval = func(*args, **kwargs) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\function.py", line 288, in __new__ evaluated = cls.eval(*args) File "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\functions\elementary\exponential.py", line 718, in eval coeff = arg.as_coefficient(I) AttributeError: 'ImmutableDenseNDimArray' object has no attribute 'as_coefficient' Zohreh Karimzadeh https://www.researchgate.net/profile/Zohreh-Karimzadeh Skype Name 49a52224a8b6b38b Twitter Account @zohrehkarimzad1 z.karimza...@gmail.com +989102116325 ((((((((((((((((Value Water))))))))))))))) Zohreh Karimzadeh *https://www.researchgate.net/profile/Zohreh-Karimzadeh* <https://www.researchgate.net/profile/Zohreh-Karimzadeh> Skype Name 49a52224a8b6b38b Twitter Account @zohrehkarimzad1 z.karimza...@gmail.com +989102116325 ((((((((((((((((Value Water))))))))))))))) On Thu, Aug 18, 2022 at 10:42 AM Peter Stahlecker < peter.stahlec...@gmail.com> wrote: > I use lambdify quite a bit, on rather large expressions. > Basically, it always works like this for me: > > import sympy as sm > x1, x2, …, xn = sm.symbols(‚x1, x2, ….., xn‘) > …. > … > expr = some expression of generally with me: sm.sin, sm.cos, sm.exp, > sm.sqrt, > sm.Heaviside, etc.. > This expression may have 50,000 terms, may be an (axb) matrix, whatever. > > expr_lam = sm.lambdify([x1, x2, …,xn], expr) > > Now I can evaluate expr_lam(…) like I would evaluate any numpy function. > > I have no idea, what expr_lam looks like, I would not know how to look at > it. > I assume, it converts sm.sin(..) to np.sin(…), etc > > This is how it works for me. > As I do not really understand your points, like ‚dynamically created‘, > ‚parse and subs‘, this may be of not help at all for you. > > Peter > > > On Thu 18. Aug 2022 at 09:21 Zohreh Karimzadeh <z.karimza...@gmail.com> > wrote: > >> Before run I import sp.sqrt or sp.exp but after run they get >> disappeared. My expression is big and dynamically created and not >> possible to parse and subs np.exp or sp.exp. >> >> Zohreh Karimzadeh >> >> Contact me on >> +989102116325 >> and at >> z.karimza...@gmail.com >> 🌧️🌍🌱 >> >> >> On Thu, 18 Aug 2022, 01:17 Aaron Meurer, <asmeu...@gmail.com> wrote: >> >>> Your expression uses "sqrt" but you haven't imported it from anywhere, >>> since you only did "import sympy as sp". You need to use sp.sqrt. >>> >>> Aaron Meurer >>> >>> On Wed, Aug 17, 2022 at 11:02 AM Zohreh Karimzadeh < >>> z.karimza...@gmail.com> wrote: >>> >>>> Here is my code: >>>> >>>> import matplotlib.pyplot as plt >>>> import numpy as np >>>> import sympy as sp >>>> import pandas as pd >>>> #exp_NaCl path: F:\Zohreh\MainZohreh\postdoc-field\CSU\Duplicat_Pure >>>> df = >>>> pd.read_excel(r'F:\Zohreh\MainZohreh\postdoc-field\CSU\Duplicat_Pure\data.xlsx', >>>> sheet_name='NaCl_exp') >>>> XNa = df['XNa'] >>>> XCl = df['XCl'] >>>> Xwater = df['Xwater'] >>>> Y = df['gama_x'] >>>> L=['WwaterNaCl', 'UwaterNaCl', 'VwaterNaCl', 'XCl', 'XNa', 'Xwater', >>>> 'BNaCl'] >>>> for j in range(len(L)): >>>> locals()[L[j]] = sp.symbols(L[j]) >>>> expr = -0.0118343195266272*BNaCl*XCl*XNa*(-2*(9.19238815542512*sqrt(XNa) + >>>> 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/((XCl + XNa)*(sqrt(XNa) + sqrt(XCl >>>> + XNa))**2) + >>>> 0.00591715976331361*BNaCl*XCl*(-2*(9.19238815542512*sqrt(XNa) + >>>> 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/(sqrt(XNa) + sqrt(XCl + XNa))**2 + >>>> 0.00591715976331361*BNaCl*XNa*(-2*(9.19238815542512*sqrt(XNa) + >>>> 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/(sqrt(XNa) + sqrt(XCl + XNa))**2 - >>>> 1.0*Cl*WwaterNaCl*Xwater*(0.5*XCl + 0.5*XNa + 0.5)/XCl - >>>> 0.5*Cl*WwaterNaCl/XCl - 4.0*UwaterNaCl*XCl*XNa*Xwater + >>>> 2.0*UwaterNaCl*XCl*Xwater + 2.0*UwaterNaCl*XNa*Xwater - 4.0*UwaterNaCl*XNa >>>> - 6.0*VwaterNaCl*XCl*XNa*Xwater**2 - 4.0*VwaterNaCl*XCl*Xwater**2 + >>>> 2.0*VwaterNaCl*XNa*Xwater**2 - 1.0*WwaterNaCl*Xwater*(0.5*XCl + 0.5*XNa + >>>> 0.5) + 2.0*WwaterNaCl*Xwater - 0.5*WwaterNaCl - >>>> 1.45739430799067*(0.707106781186548*sqrt(XNa) + 0.707106781186548*sqrt(XCl >>>> + XNa))*(-XCl - XNa + 1)/(9.19238815542512*sqrt(XNa) + >>>> 9.19238815542512*sqrt(XCl + XNa) + 1) - >>>> 1.45739430799067*(0.707106781186548*sqrt(XNa) + 0.707106781186548*sqrt(XCl >>>> + XNa))*(-1.4142135623731*sqrt(XNa) - 1.4142135623731*sqrt(XCl + XNa) + >>>> 1)/(9.19238815542512*sqrt(XNa) + 9.19238815542512*sqrt(XCl + XNa) + 1) - >>>> 0.448429017843282*log(9.19238815542512*sqrt(XNa) + >>>> 9.19238815542512*sqrt(XCl + XNa) + 1) >>>> model_func = sp.lambdify(L, expr ) >>>> >>>> def f(param): >>>> BNaCl = param[0] >>>> UwaterNaCl = param[1] >>>> VwaterNaCl = param[2] >>>> WwaterNaCl = param[3] >>>> Y_est = model_func >>>> return np.sum((np.log(Y) - Y_est)**2) >>>> >>>> >>>> bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] >>>> x0 = (1, 0.01, 0.98, 1) >>>> con = {"type": "eq", "fun": c} >>>> >>>> result = minimize(f, x0, bounds=bnds) >>>> >>>> print(result.fun) >>>> print(result.message) >>>> print(result.x[0], result.x[1], result.x[2], result.x[3]) >>>> >>>> while I got : >>>> NameError: name 'sqrt' is not defined >>>> >>>> Zohreh Karimzadeh >>>> *https://www.researchgate.net/profile/Zohreh-Karimzadeh* >>>> <https://www.researchgate.net/profile/Zohreh-Karimzadeh> >>>> Skype Name 49a52224a8b6b38b >>>> Twitter Account @zohrehkarimzad1 >>>> z.karimza...@gmail.com >>>> +989102116325 >>>> ((((((((((((((((Value Water))))))))))))))) >>>> >>>> >>>> On Wed, Aug 17, 2022 at 7:46 PM Peter Stahlecker < >>>> peter.stahlec...@gmail.com> wrote: >>>> >>>>> I use lambdify(....) a lot, but always like this: >>>>> >>>>> x = sympy.symbols('x') >>>>> expr = symy.S(10.) * sympy.sqrt(x) >>>>> expr_lam = sympy.lambdify([x], expr) >>>>> >>>>> a = expr_lam(10.) >>>>> >>>>> This seems to work for me. >>>>> >>>>> On Wed 17. Aug 2022 at 20:38, Zohreh Karimzadeh < >>>>> z.karimza...@gmail.com> wrote: >>>>> >>>>>> Dear sympy group >>>>>> Thanks for your sympy. >>>>>> >>>>>> I am working on a code, after creating my big expression using sympy >>>>>> it includes sqrt. >>>>>> >>>>>> I need to lambdify my expression to make it consistent with numpy and >>>>>> other suffs. >>>>>> >>>>>> expr =10 * sp.sqrt(sp.symbols('x')) >>>>>> >>>>>> model_func = sp.lambdify('x', expr) >>>>>> >>>>>> But I found my expression after lambdifying becomes somethings like >>>>>> this: >>>>>> >>>>>> 10*sqrt(x) >>>>>> >>>>>> while I need : >>>>>> >>>>>> 10*numpy.sqrt(x) >>>>>> >>>>>> Could possibly let me know how get sqrt to work with numpy? >>>>>> >>>>>> Regards, >>>>>> >>>>>> Zohreh >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> -- >>>>>> You received this message because you are subscribed to the Google >>>>>> Groups "sympy" group. >>>>>> To unsubscribe from this group and stop receiving emails from it, >>>>>> send an email to sympy+unsubscr...@googlegroups.com. >>>>>> To view this discussion on the web visit >>>>>> https://groups.google.com/d/msgid/sympy/1f0b313f-31c5-402e-991e-142a556016f4n%40googlegroups.com >>>>>> <https://groups.google.com/d/msgid/sympy/1f0b313f-31c5-402e-991e-142a556016f4n%40googlegroups.com?utm_medium=email&utm_source=footer> >>>>>> . >>>>>> >>>>> -- >>>>> Best regards, >>>>> >>>>> Peter Stahlecker >>>>> >>>>> -- >>>>> You received this message because you are subscribed to the Google >>>>> Groups "sympy" group. >>>>> To unsubscribe from this group and stop receiving emails from it, send >>>>> an email to sympy+unsubscr...@googlegroups.com. >>>>> To view this discussion on the web visit >>>>> https://groups.google.com/d/msgid/sympy/CABKqA0ZoGwsadsk4SWCbJVMbCDwXcO_gNGumJH00GAeEFod7Cw%40mail.gmail.com >>>>> <https://groups.google.com/d/msgid/sympy/CABKqA0ZoGwsadsk4SWCbJVMbCDwXcO_gNGumJH00GAeEFod7Cw%40mail.gmail.com?utm_medium=email&utm_source=footer> >>>>> . >>>>> >>>> -- >>>> You received this message because you are subscribed to the Google >>>> Groups "sympy" group. >>>> To unsubscribe from this group and stop receiving emails from it, send >>>> an email to sympy+unsubscr...@googlegroups.com. >>>> To view this discussion on the web visit >>>> https://groups.google.com/d/msgid/sympy/CA%2B1XYLPRvXZ6jiJbUS_xpWNKqMuUH7Kt5evue%2BwKEwDMvGekBQ%40mail.gmail.com >>>> <https://groups.google.com/d/msgid/sympy/CA%2B1XYLPRvXZ6jiJbUS_xpWNKqMuUH7Kt5evue%2BwKEwDMvGekBQ%40mail.gmail.com?utm_medium=email&utm_source=footer> >>>> . >>> >>> >>>> -- >>> You received this message because you are subscribed to the Google >>> Groups "sympy" group. >>> To unsubscribe from this group and stop receiving emails from it, send >>> an email to sympy+unsubscr...@googlegroups.com. >>> To view this discussion on the web visit >>> https://groups.google.com/d/msgid/sympy/CAKgW%3D6JfUmU7Uu%2BSrcA1STxVvWWm7bGWE%3Dit8CTchksTC0Qk7g%40mail.gmail.com >>> <https://groups.google.com/d/msgid/sympy/CAKgW%3D6JfUmU7Uu%2BSrcA1STxVvWWm7bGWE%3Dit8CTchksTC0Qk7g%40mail.gmail.com?utm_medium=email&utm_source=footer> >>> . >>> >> -- >> You received this message because you are subscribed to the Google Groups >> "sympy" group. >> To unsubscribe from this group and stop receiving emails from it, send an >> email to sympy+unsubscr...@googlegroups.com. >> To view this discussion on the web visit >> https://groups.google.com/d/msgid/sympy/CA%2B1XYLPiCR%3DS2Fac3FZtjMpspqB7BRKtYEi45BVWPjkizVbNvw%40mail.gmail.com >> <https://groups.google.com/d/msgid/sympy/CA%2B1XYLPiCR%3DS2Fac3FZtjMpspqB7BRKtYEi45BVWPjkizVbNvw%40mail.gmail.com?utm_medium=email&utm_source=footer> >> . >> > -- > Best regards, > > Peter Stahlecker > > -- > You received this message because you are subscribed to the Google Groups > "sympy" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sympy+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sympy/CABKqA0b%3DF0akMH4oyg5%2By9dGvgrf_vvVJTnVhVduMP1f%2Bp1pFw%40mail.gmail.com > <https://groups.google.com/d/msgid/sympy/CABKqA0b%3DF0akMH4oyg5%2By9dGvgrf_vvVJTnVhVduMP1f%2Bp1pFw%40mail.gmail.com?utm_medium=email&utm_source=footer> > . > -- You received this message because you are subscribed to the Google Groups "sympy" group. To unsubscribe from this group and stop receiving emails from it, send an email to sympy+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sympy/CA%2B1XYLMK-fgpxc71GYzue5gJvd%3Dfj2sV6Dvhj8zrmVpPhiVk%2Bw%40mail.gmail.com.