In your first return statement, where it works, you seem to return a number. In your second return, your a ‚mixture‘ of numbers and functions: Vlam_est is a *function*, which requires four arguments as per its definition. Would you not have to return Vlam_est(alpha, beta, gamma, eta) ?
On Thu 18. Aug 2022 at 17:35 Zohreh Karimzadeh <z.karimza...@gmail.com> wrote: > the following code is ok when expression is passed as : > > import numpy as np > from scipy.optimize import minimize, curve_fit > from lmfit import Model, Parameters > > L = np.array([0.299, 0.295, 0.290, 0.284, 0.279, 0.273, 0.268, 0.262, 0.256, > 0.250]) > K = np.array([2.954, 3.056, 3.119, 3.163, 3.215, 3.274, 3.351, 3.410, 3.446, > 3.416]) > VA = np.array([0.919, 0.727, 0.928, 0.629, 0.656, 0.854, 0.955, 0.981, 0.908, > 0.794]) > > > def f(param): > gamma = param[0] > alpha = param[1] > beta = param[2] > eta = param[3] > VA_est = gamma - (1 / eta) * np.log(alpha * L ** -eta + beta * K ** -eta) > > return np.sum((np.log(VA) - VA_est) ** 2) > > > bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] > x0 = (1, 0.01, 0.98, 1) > result = minimize(f, x0, bounds=bnds) > print(result.message) > print(result.x[0], result.x[1], result.x[2], result.x[3]) > > but when the expression is passed as the following way: > > import numpy as np > import sympy as sp > from scipy.optimize import minimize, curve_fit > from lmfit import Model, Parameters > > L = np.array([0.299, 0.295, 0.290, 0.284, 0.279, 0.273, 0.268, 0.262, 0.256, > 0.250]) > K = np.array([2.954, 3.056, 3.119, 3.163, 3.215, 3.274, 3.351, 3.410, 3.446, > 3.416]) > VA = np.array([0.919, 0.727, 0.928, 0.629, 0.656, 0.854, 0.955, 0.981, 0.908, > 0.794]) > > > def f(param): > gamma, alpha, beta, eta = sp.symbols('gamma, alpha, beta, eta') > gamma = param[0] > alpha = param[1] > beta = param[2] > eta = param[3] > Vi_est = gamma - (1 / eta) * sp.log(alpha * L ** -eta + beta * K ** -eta) > Vlam_est = sp.lambdify((gamma, alpha, beta, eta), Vi_est) > > return np.sum((np.log(VA) - Vlam_est) ** 2) > > > bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] > x0 = (1, 0.01, 0.98, 1) > > result = minimize(f, x0, bounds=bnds) > > print(result.message) > print(result.x[0], result.x[1], result.x[2], result.x[3]) > > > I face difficulty: > ********************************************* > Traceback (most recent call last): > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", > line 70, in wrapper > retval = cfunc(*args, **kwargs) > TypeError: unhashable type: 'numpy.ndarray' > > During handling of the above exception, another exception occurred: > > Traceback (most recent call last): > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", > line 70, in wrapper > retval = cfunc(*args, **kwargs) > TypeError: unhashable type: 'numpy.ndarray' > > During handling of the above exception, another exception occurred: > > Traceback (most recent call last): > File > "F:\Zohreh\MainZohreh\postdoc-field\CSU\pythonProject\fit_test_2.py", line > 26, in <module> > result = minimize(f, x0, bounds=bnds) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_minimize.py", > line 692, in minimize > res = _minimize_lbfgsb(fun, x0, args, jac, bounds, > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_lbfgsb_py.py", > line 308, in _minimize_lbfgsb > sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_optimize.py", > line 263, in _prepare_scalar_function > sf = ScalarFunction(fun, x0, args, grad, hess, > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", > line 158, in __init__ > self._update_fun() > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", > line 251, in _update_fun > self._update_fun_impl() > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", > line 155, in update_fun > self.f = fun_wrapped(self.x) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\scipy\optimize\_differentiable_functions.py", > line 137, in fun_wrapped > fx = fun(np.copy(x), *args) > File > "F:\Zohreh\MainZohreh\postdoc-field\CSU\pythonProject\fit_test_2.py", line > 17, in f > Vi_est = gamma - (1 / eta) * sp.log(alpha * L ** -eta + beta * K ** > -eta) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", > line 74, in wrapper > retval = func(*args, **kwargs) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\function.py", > line 476, in __new__ > result = super().__new__(cls, *args, **options) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\cache.py", > line 74, in wrapper > retval = func(*args, **kwargs) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\core\function.py", > line 288, in __new__ > evaluated = cls.eval(*args) > File > "C:\Users\Zohreh\AppData\Roaming\Python\Python310\site-packages\sympy\functions\elementary\exponential.py", > line 718, in eval > coeff = arg.as_coefficient(I) > AttributeError: 'ImmutableDenseNDimArray' object has no attribute > 'as_coefficient' > > > > > > > > > Zohreh Karimzadeh > https://www.researchgate.net/profile/Zohreh-Karimzadeh > Skype Name 49a52224a8b6b38b > Twitter Account @zohrehkarimzad1 > z.karimza...@gmail.com > +989102116325 > ((((((((((((((((Value Water))))))))))))))) > > Zohreh Karimzadeh > *https://www.researchgate.net/profile/Zohreh-Karimzadeh* > <https://www.researchgate.net/profile/Zohreh-Karimzadeh> > Skype Name 49a52224a8b6b38b > Twitter Account @zohrehkarimzad1 > z.karimza...@gmail.com > +989102116325 > ((((((((((((((((Value Water))))))))))))))) > > > On Thu, Aug 18, 2022 at 10:42 AM Peter Stahlecker < > peter.stahlec...@gmail.com> wrote: > >> I use lambdify quite a bit, on rather large expressions. >> Basically, it always works like this for me: >> >> import sympy as sm >> x1, x2, …, xn = sm.symbols(‚x1, x2, ….., xn‘) >> …. >> … >> expr = some expression of generally with me: sm.sin, sm.cos, sm.exp, >> sm.sqrt, >> sm.Heaviside, etc.. >> This expression may have 50,000 terms, may be an (axb) matrix, whatever. >> >> expr_lam = sm.lambdify([x1, x2, …,xn], expr) >> >> Now I can evaluate expr_lam(…) like I would evaluate any numpy function. >> >> I have no idea, what expr_lam looks like, I would not know how to look at >> it. >> I assume, it converts sm.sin(..) to np.sin(…), etc >> >> This is how it works for me. >> As I do not really understand your points, like ‚dynamically created‘, >> ‚parse and subs‘, this may be of not help at all for you. >> >> Peter >> >> >> On Thu 18. Aug 2022 at 09:21 Zohreh Karimzadeh <z.karimza...@gmail.com> >> wrote: >> >>> Before run I import sp.sqrt or sp.exp but after run they get >>> disappeared. My expression is big and dynamically created and not >>> possible to parse and subs np.exp or sp.exp. >>> >>> Zohreh Karimzadeh >>> >>> Contact me on >>> +989102116325 >>> and at >>> z.karimza...@gmail.com >>> 🌧️🌍🌱 >>> >>> >>> On Thu, 18 Aug 2022, 01:17 Aaron Meurer, <asmeu...@gmail.com> wrote: >>> >>>> Your expression uses "sqrt" but you haven't imported it from anywhere, >>>> since you only did "import sympy as sp". You need to use sp.sqrt. >>>> >>>> Aaron Meurer >>>> >>>> On Wed, Aug 17, 2022 at 11:02 AM Zohreh Karimzadeh < >>>> z.karimza...@gmail.com> wrote: >>>> >>>>> Here is my code: >>>>> >>>>> import matplotlib.pyplot as plt >>>>> import numpy as np >>>>> import sympy as sp >>>>> import pandas as pd >>>>> #exp_NaCl path: F:\Zohreh\MainZohreh\postdoc-field\CSU\Duplicat_Pure >>>>> df = >>>>> pd.read_excel(r'F:\Zohreh\MainZohreh\postdoc-field\CSU\Duplicat_Pure\data.xlsx', >>>>> sheet_name='NaCl_exp') >>>>> XNa = df['XNa'] >>>>> XCl = df['XCl'] >>>>> Xwater = df['Xwater'] >>>>> Y = df['gama_x'] >>>>> L=['WwaterNaCl', 'UwaterNaCl', 'VwaterNaCl', 'XCl', 'XNa', 'Xwater', >>>>> 'BNaCl'] >>>>> for j in range(len(L)): >>>>> locals()[L[j]] = sp.symbols(L[j]) >>>>> expr = -0.0118343195266272*BNaCl*XCl*XNa*(-2*(9.19238815542512*sqrt(XNa) >>>>> + 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/((XCl + XNa)*(sqrt(XNa) + sqrt(XCl >>>>> + XNa))**2) + >>>>> 0.00591715976331361*BNaCl*XCl*(-2*(9.19238815542512*sqrt(XNa) + >>>>> 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/(sqrt(XNa) + sqrt(XCl + XNa))**2 + >>>>> 0.00591715976331361*BNaCl*XNa*(-2*(9.19238815542512*sqrt(XNa) + >>>>> 9.19238815542512*sqrt(XCl + XNa) + 1)*exp(-9.19238815542512*sqrt(XNa) - >>>>> 9.19238815542512*sqrt(XCl + XNa)) + 2)/(sqrt(XNa) + sqrt(XCl + XNa))**2 - >>>>> 1.0*Cl*WwaterNaCl*Xwater*(0.5*XCl + 0.5*XNa + 0.5)/XCl - >>>>> 0.5*Cl*WwaterNaCl/XCl - 4.0*UwaterNaCl*XCl*XNa*Xwater + >>>>> 2.0*UwaterNaCl*XCl*Xwater + 2.0*UwaterNaCl*XNa*Xwater - >>>>> 4.0*UwaterNaCl*XNa - 6.0*VwaterNaCl*XCl*XNa*Xwater**2 - >>>>> 4.0*VwaterNaCl*XCl*Xwater**2 + 2.0*VwaterNaCl*XNa*Xwater**2 - >>>>> 1.0*WwaterNaCl*Xwater*(0.5*XCl + 0.5*XNa + 0.5) + 2.0*WwaterNaCl*Xwater - >>>>> 0.5*WwaterNaCl - 1.45739430799067*(0.707106781186548*sqrt(XNa) + >>>>> 0.707106781186548*sqrt(XCl + XNa))*(-XCl - XNa + >>>>> 1)/(9.19238815542512*sqrt(XNa) + 9.19238815542512*sqrt(XCl + XNa) + 1) - >>>>> 1.45739430799067*(0.707106781186548*sqrt(XNa) + >>>>> 0.707106781186548*sqrt(XCl + XNa))*(-1.4142135623731*sqrt(XNa) - >>>>> 1.4142135623731*sqrt(XCl + XNa) + 1)/(9.19238815542512*sqrt(XNa) + >>>>> 9.19238815542512*sqrt(XCl + XNa) + 1) - >>>>> 0.448429017843282*log(9.19238815542512*sqrt(XNa) + >>>>> 9.19238815542512*sqrt(XCl + XNa) + 1) >>>>> model_func = sp.lambdify(L, expr ) >>>>> >>>>> def f(param): >>>>> BNaCl = param[0] >>>>> UwaterNaCl = param[1] >>>>> VwaterNaCl = param[2] >>>>> WwaterNaCl = param[3] >>>>> Y_est = model_func >>>>> return np.sum((np.log(Y) - Y_est)**2) >>>>> >>>>> >>>>> bnds = [(1, np.inf), (0, 1), (0, 1), (-1, np.inf)] >>>>> x0 = (1, 0.01, 0.98, 1) >>>>> con = {"type": "eq", "fun": c} >>>>> >>>>> result = minimize(f, x0, bounds=bnds) >>>>> >>>>> print(result.fun) >>>>> print(result.message) >>>>> print(result.x[0], result.x[1], result.x[2], result.x[3]) >>>>> >>>>> while I got : >>>>> NameError: name 'sqrt' is not defined >>>>> >>>>> Zohreh Karimzadeh >>>>> *https://www.researchgate.net/profile/Zohreh-Karimzadeh* >>>>> <https://www.researchgate.net/profile/Zohreh-Karimzadeh> >>>>> Skype Name 49a52224a8b6b38b >>>>> Twitter Account @zohrehkarimzad1 >>>>> z.karimza...@gmail.com >>>>> +989102116325 >>>>> ((((((((((((((((Value Water))))))))))))))) >>>>> >>>>> >>>>> On Wed, Aug 17, 2022 at 7:46 PM Peter Stahlecker < >>>>> peter.stahlec...@gmail.com> wrote: >>>>> >>>>>> I use lambdify(....) a lot, but always like this: >>>>>> >>>>>> x = sympy.symbols('x') >>>>>> expr = symy.S(10.) * sympy.sqrt(x) >>>>>> expr_lam = sympy.lambdify([x], expr) >>>>>> >>>>>> a = expr_lam(10.) >>>>>> >>>>>> This seems to work for me. >>>>>> >>>>>> On Wed 17. Aug 2022 at 20:38, Zohreh Karimzadeh < >>>>>> z.karimza...@gmail.com> wrote: >>>>>> >>>>>>> Dear sympy group >>>>>>> Thanks for your sympy. >>>>>>> >>>>>>> I am working on a code, after creating my big expression using sympy >>>>>>> it includes sqrt. >>>>>>> >>>>>>> I need to lambdify my expression to make it consistent with numpy >>>>>>> and other suffs. >>>>>>> >>>>>>> expr =10 * sp.sqrt(sp.symbols('x')) >>>>>>> >>>>>>> model_func = sp.lambdify('x', expr) >>>>>>> >>>>>>> But I found my expression after lambdifying becomes somethings like >>>>>>> this: >>>>>>> >>>>>>> 10*sqrt(x) >>>>>>> >>>>>>> while I need : >>>>>>> >>>>>>> 10*numpy.sqrt(x) >>>>>>> >>>>>>> Could possibly let me know how get sqrt to work with numpy? >>>>>>> >>>>>>> Regards, >>>>>>> >>>>>>> Zohreh >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> -- >>>>>>> You received this message because you are subscribed to the Google >>>>>>> Groups "sympy" group. >>>>>>> To unsubscribe from this group and stop receiving emails from it, >>>>>>> send an email to sympy+unsubscr...@googlegroups.com. >>>>>>> To view this discussion on the web visit >>>>>>> https://groups.google.com/d/msgid/sympy/1f0b313f-31c5-402e-991e-142a556016f4n%40googlegroups.com >>>>>>> <https://groups.google.com/d/msgid/sympy/1f0b313f-31c5-402e-991e-142a556016f4n%40googlegroups.com?utm_medium=email&utm_source=footer> >>>>>>> . >>>>>>> >>>>>> -- >>>>>> Best regards, >>>>>> >>>>>> Peter Stahlecker >>>>>> >>>>>> -- >>>>>> You received this message because you are subscribed to the Google >>>>>> Groups "sympy" group. >>>>>> To unsubscribe from this group and stop receiving emails from it, >>>>>> send an email to sympy+unsubscr...@googlegroups.com. >>>>>> To view this discussion on the web visit >>>>>> https://groups.google.com/d/msgid/sympy/CABKqA0ZoGwsadsk4SWCbJVMbCDwXcO_gNGumJH00GAeEFod7Cw%40mail.gmail.com >>>>>> <https://groups.google.com/d/msgid/sympy/CABKqA0ZoGwsadsk4SWCbJVMbCDwXcO_gNGumJH00GAeEFod7Cw%40mail.gmail.com?utm_medium=email&utm_source=footer> >>>>>> . >>>>>> >>>>> -- >>>>> You received this message because you are subscribed to the Google >>>>> Groups "sympy" group. >>>>> To unsubscribe from this group and stop receiving emails from it, send >>>>> an email to sympy+unsubscr...@googlegroups.com. >>>>> To view this discussion on the web visit >>>>> https://groups.google.com/d/msgid/sympy/CA%2B1XYLPRvXZ6jiJbUS_xpWNKqMuUH7Kt5evue%2BwKEwDMvGekBQ%40mail.gmail.com >>>>> <https://groups.google.com/d/msgid/sympy/CA%2B1XYLPRvXZ6jiJbUS_xpWNKqMuUH7Kt5evue%2BwKEwDMvGekBQ%40mail.gmail.com?utm_medium=email&utm_source=footer> >>>>> . >>>> >>>> >>>>> -- >>>> You received this message because you are subscribed to the Google >>>> Groups "sympy" group. >>>> To unsubscribe from this group and stop receiving emails from it, send >>>> an email to sympy+unsubscr...@googlegroups.com. >>>> To view this discussion on the web visit >>>> https://groups.google.com/d/msgid/sympy/CAKgW%3D6JfUmU7Uu%2BSrcA1STxVvWWm7bGWE%3Dit8CTchksTC0Qk7g%40mail.gmail.com >>>> <https://groups.google.com/d/msgid/sympy/CAKgW%3D6JfUmU7Uu%2BSrcA1STxVvWWm7bGWE%3Dit8CTchksTC0Qk7g%40mail.gmail.com?utm_medium=email&utm_source=footer> >>>> . >>>> >>> -- >>> You received this message because you are subscribed to the Google >>> Groups "sympy" group. >>> To unsubscribe from this group and stop receiving emails from it, send >>> an email to sympy+unsubscr...@googlegroups.com. >>> To view this discussion on the web visit >>> https://groups.google.com/d/msgid/sympy/CA%2B1XYLPiCR%3DS2Fac3FZtjMpspqB7BRKtYEi45BVWPjkizVbNvw%40mail.gmail.com >>> <https://groups.google.com/d/msgid/sympy/CA%2B1XYLPiCR%3DS2Fac3FZtjMpspqB7BRKtYEi45BVWPjkizVbNvw%40mail.gmail.com?utm_medium=email&utm_source=footer> >>> . >>> >> -- >> Best regards, >> >> Peter Stahlecker >> >> -- >> You received this message because you are subscribed to the Google Groups >> "sympy" group. >> To unsubscribe from this group and stop receiving emails from it, send an >> email to sympy+unsubscr...@googlegroups.com. >> > To view this discussion on the web visit >> https://groups.google.com/d/msgid/sympy/CABKqA0b%3DF0akMH4oyg5%2By9dGvgrf_vvVJTnVhVduMP1f%2Bp1pFw%40mail.gmail.com >> <https://groups.google.com/d/msgid/sympy/CABKqA0b%3DF0akMH4oyg5%2By9dGvgrf_vvVJTnVhVduMP1f%2Bp1pFw%40mail.gmail.com?utm_medium=email&utm_source=footer> >> . >> > -- > You received this message because you are subscribed to the Google Groups > "sympy" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sympy+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sympy/CA%2B1XYLMK-fgpxc71GYzue5gJvd%3Dfj2sV6Dvhj8zrmVpPhiVk%2Bw%40mail.gmail.com > <https://groups.google.com/d/msgid/sympy/CA%2B1XYLMK-fgpxc71GYzue5gJvd%3Dfj2sV6Dvhj8zrmVpPhiVk%2Bw%40mail.gmail.com?utm_medium=email&utm_source=footer> > . > -- Best regards, Peter Stahlecker -- You received this message because you are subscribed to the Google Groups "sympy" group. To unsubscribe from this group and stop receiving emails from it, send an email to sympy+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sympy/CABKqA0aBsD2WhpTuQqzZGUK1pfkUyH4q3Om9DdBQOpoaaO4rqQ%40mail.gmail.com.